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ABSTRACT
In related research we have proposed a market architecture
for multi-agent contracting and we have implemented pro-
totypes of both the market architecture and the agents in
a system called MAGNET. A customer agent in MAGNET
solicits bids for the execution of multi-step plans, in which
tasks have precedence and time constraints, by posting a
Request for Quotes to the market. The Request for Quotes
needs to include for each task its precedence constraints and
a time window. In this paper, we study the problem of op-
timizing the time windows in the Requests for Quotes. Our
approach is to use the Expected Utility Theory to reduce the
likelihood of receiving unattractive bids, while maximizing
the number of bids that are likely to be included in the win-
ning bundle. We describe the model, illustrate its operation
and properties, and discuss what assumptions are required
for its successful integration into MAGNET or other multi-
agent contracting systems.

Categories and Subject Descriptors
K.4.4 [Computers and Society]: E-commerce; I.2.11 [Ar-
tificial Intelligence]: Distributed Artificial Intelligence

General Terms
Algorithms, Economics, Theory

Keywords
Automated auctions, multi-agent contracting, expected util-
ity, risk estimation

1. INTRODUCTION
The MAGNET (Multi-AGent NEgotiation Testbed) [4]

system is designed to support multiple agents in negotiating
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contracts for tasks with complex temporal and precedence
constraints.
We distinguish between two agent roles, the customer and

the supplier. A customer is an agent who needs resources
outside its direct control in order to carry out his plans. It
does so by soliciting the help of other self-interested agents
through a Requests for Quotes (RFQ). A supplier is an agent
who, in response to an RFQ, may offer to provide the re-
quested resources or services for specified prices, over speci-
fied time periods. The objective of the agents is to maximize
their profits while predicting and managing their financial
risk exposure.
In this paper, we focus on the decision process a customer

agent needs to go through in order to generate an RFQ. We
study in particular the problem of how to specify the time
windows for the different tasks in the RFQ. This decision
determines an approximate schedule by setting limits on the
start and finish times for each individual task, since the
RFQ includes early start and late finish times for each task.
Because there is a probability of loss as well as a probability
of gain, we must deal with the risk posture of the person or
organization on whose behalf the agent is acting.
We show how to use the Expected Utility Theory to deter-

mine the time windows for tasks in the task network, so that
bids that are close to these time windows form the most pre-
ferred risk-payoff combinations for the customer agent. We
further examine to what extent the behavior of the model
corresponds to our expectations, explain what market infor-
mation needs to be collected in order to integrate the model
in MAGNET system and, finally, discuss how to use the
resulting time allocations to construct RFQs.

2. RELEVANCE OF THE PROBLEM
Before presenting our proposed solution, we need to un-

derstand the importance of selecting appropriate time win-
dows for tasks in RFQs and how this choice affects the cus-
tomer agent’s ability to accomplish the tasks as economically
and rapidly as possible.
Choosing appropriate time windows affects the number

and price of the bids received, the ability to compose the
bids into a feasible schedule, and the financial exposure of
the customer agent.
There are two major decisions the agent has to take here:

the relative allocation of time among the different tasks, and
the extent to which the time windows of tasks connected by
precedence relations are allowed to overlap.



We have shown [1] that the time constraints specified in
the RFQ can affect the customer’s outcome in two major
ways:

1. by affecting the number, price, and time windows of
the bids submitted. We assume that bids will reflect
supplier resource commitments, and therefore larger
time windows will result in more bids and better uti-
lization of resources, in turn leading to lower prices [3].
However, an RFQ that features overlapping time win-
dows makes the process of winner determination more
complex [2]. Another less obvious problem is that
every extra bid over the minimum needed to cover
all tasks adds one more rejected bid. Ultimately, a
large percentage of rejections will reduce the customer
agent’s credibility, which, in turn, will result in fewer
bids and/or higher costs.

2. by affecting the financial exposure of the customer
agent. We assume non-refundable deposits are paid
to secure awarded bids, and payments for each task
are made as the tasks are completed. The payment
to the customer occurs only at the completion of all
the tasks. Once a task starts and, in case it is suc-
cessfully completed in the time period specified by the
contract, the customer is liable for its full cost, regard-
less of whether in the meantime the plan as a whole
has been abandoned due to a failure on some other
branch of the plan.

We define successful plan execution as “completed by the
deadline,” and we define successful completion of a task as
“completed without violating temporal constraints in the
plan.” Note that a task can be completed successfully even
if it is not finished within the duration promised by the
bidder, as long as the schedule has sufficient slack to absorb
the overrun. If a plan is completed after its deadline, it has
failed, and we ignore any residual value to the customer of
the work completed.
The uncertainty of whether the tasks will be completed

on time as promised by suppliers further complicates the
decision process. Because of the temporal constraints be-
tween tasks, failure to accomplish a task does not necessar-
ily mean failure of the goal. Recovery might be possible,
provided that whenever a supplier fails to perform or de-
commits there are other suppliers willing to do the task and
there is sufficient time to recover without invalidating the
rest of the schedule.
If a task is not completed by the supplier, the customer

agent is not liable for its cost, but this failure can have a
devastating effect on other parts of the plan. Having slack
in the schedule increases the probability that tasks will be
completed successfully or that there will be enough time to
recover if one of the tasks fails. However, slack extends the
completion time and so reduces the reward. In made-to-
order products speed is the essence and taking extra time
might prevent a supplier from getting a contract. This com-
plicates the selection of which bids to accept. The lowest
cost combination of bids and the tightest schedule achiev-
able is not necessarily the preferable schedule because it is
more likely to be brittle.
Risk can also be reduced by consolidating tasks with fewer

suppliers. Suppliers can bid on “packages” composed of sub-
sets of tasks from the RFQ. In general, the customer is better
off from a risk standpoint if it takes these packages, assuming

that the supplier is willing to be paid for the whole package
at the time of its completion. In some cases, the customer
may be willing to pay a premium over the individual task
prices in order to reduce risk. The advantage of doing this is
greater toward the end of the plan than near the beginning,
since at that point the customer has already paid a signifi-
cant part of the tasks. Having a greater financial exposure
provides an additional incentive to reduce risk.

3. THE MAGNET FRAMEWORK

3.1 General Terms
The customer is a human or artificial agent who wants

to achieve some goal and needs resources or services beyond
her direct control.
The supplier is a human or artificial agent who has direct

control over some resources or services and may offer to pro-
vide those in response to external request, i.e., may submit
and commit to bids.
The mediator is a MAGNET-assisted human agent who

meets the needs of a customer by negotiating over multiple
goods or services with one or more suppliers. We often refer
to the artificial part of the duo as to the customer agent.
The Request for Quotes is a signal composed by the cus-

tomer agent on the basis of the customer’s needs and is sent
to solicit suppliers’ bids. MAGNET is a mixed initiative
system, so between composing RFQs and sending them out,
there is a stage where a human user can impose her prefer-
ences on the RFQ choices.

3.2 Task Network
The task network (see Figure 1) represents the structure

of the customer’s plan. In essence, it is a connected directed
acyclic graph.
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Figure 1: A task network example.

Mathematically speaking, a task network is a tuple 〈N,≺〉
of a set N of individual tasks and strict partial ordering on
them. We conveniently abuse N to also denote the number
of tasks. A task network represents a plan to accomplish
the agent’s goal.
We define P (n) := {m ∈ N |m ≺ n} to be a set of pre-

decessors of n ∈ N , where every predecessor m should be
completed before task n might start. Note that, in general,
P (n) is not completely ordered by ≺.
Similarly, S (n) is to denote a set of successors of n.

3.3 Time Allocation and Probabilities
A task network is characterized by a start time ts and a

finish time tf , which delimit the interval of time when tasks
can be scheduled.



The placement of an individual task n in the schedule is
characterized by its start time tsn and finish time tfn, which
are subject to the following constraints:

ts ≤ tfm ≤ tsn, ∀m ∈ P1 (n)

tfn ≤ tsm ≤ tf , ∀m ∈ S1 (n)

where P1 (n) is the a set of immediate predecessors of n,
P1 (n) = {m ∈ N |m ≺ n, @m′ ∈ N,m ≺ m′ ≺ n}. S1 (n) is
defined similarly to be the set of immediate successors of
task n.
The probability of task n completion by the time t, condi-

tional on the successful completion of task n, is distributed
according to the cumulative distribution function (CDF)
Φn = Φn (tsn; t) ,Φn (·;∞) = 1. Observe that Φn is defined
to be explicitly dependent on the start time tsn. To see the
rationale, consider the probability of successful mail delivery
in x days for packages that were mailed on different days of
a week.
There is an associated unconditional probability of success

pn ∈ [0, 1] characterizing the percentage of tasks that are
successfully completed given infinite time (see Figure 2).

1
pn

t

pnΦn(t
s

n
; t)

Figure 2: Unconditional distribution for successful

completion probability.

3.4 Monetary Transfers
Task n bears an associated cost1. We assume the total

cost of task n has two parts: a deposit, which is paid when
the task starts, and a cost cn which is due at some time after
successful completion of n. Since we never compare plans
with different deposits we assume without loss of generality
the deposit to be 0.
There is a single final payment V scheduled at the plan

finish time tf and paid conditional on all tasks in n being
successfully completed by that time.
There is an associated rate of return qn

2 that is used to
calculate the discounted present value (PV) for payoff cn due
at time t as

PV (cn; t) := cn (1 + qn)
−t .

We associate the return q with the final payment V .

4. EXPECTED UTILITY

4.1 General Terms
We represent the customer agent’s preferences over pay-

offs by the von Neumann-Morgenstern utility function u.

1Hereafter we use words “cost” and “reward” to denote some
monetary value, while referring the same value as “payoff”
or “payment” whenever it is scheduled at some time t.
2The reason for having multiple qn’s is that individual tasks
can be financed from different sources, thus affecting task
scheduling.

We further assume that the absolute risk-aversion coeffi-
cient [14] r := −u′′/u′ of u is constant for any value of
its argument, hence u can be represented as follows:

u (x) =

{

− exp {−rx} for r 6= 0
x for r = 0

A gamble is a set of payoff-probability pairsG =
{

(xi, pi)i
}

s.t. pi > 0, ∀i and
∑

i
pi = 1. The expectation of the utility

function over a gamble G is the expected utility (EU):

Eu [G] :=
∑

(xi,pi)∈G

piu (xi)

The certainty equivalent (CE) of a gamble G is defined
as the single monetary value whose utility matches the ex-
pected utility of the entire gamble G, i.e. u (CE [G]) :=
Eu [G]. Hence under our assumptions

CE(G) =







−1
r log

∑

(xi,pi)∈G
pi exp {−rxi} for r 6= 0

∑

(xi,pi)∈G
pixi for r = 0

Naturally, the agent will not be willing to accept gambles
with less than positive certainty equivalent and the higher
values of the certainty equivalent will correspond to more
attractive gambles.
To illustrate the concept, Figure 3 shows how the certainty

equivalent depends on the risk-aversity of an agent. In this
figure we consider a gamble that brings the agent either 100
or nothing with equal probabilities. Agents with positive
r’s are risk-averse, those with negative r’s are risk-loving.
Agents with zero risk-aversity zero, i.e. risk-neutral, have a
CE equal to the gamble’s weighted mean 50.
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max CE({(100,1/2),(0,1/2)})

Figure 3: Certainty equivalent of a simple gamble

as a function of the risk-aversity.

4.2 Cumulative Probabilities
To compute the certainty equivalent of a gamble we need

to determine a schedule for the tasks and compute the payoff-
probability pairs.
We assume that a payoff cn for task n is scheduled at tfn,

so its present value c̃n
3 is

c̃n := cn (1 + qn)
−tf

n

3Hereafter we “wiggle” variables that depend on the current
task schedule, while omitting all corresponding indices for
the sake of simplicity.



We define the conditional probability of task n success as

p̃n := pnΦn

(

tsn; t
f
n

)

.

We also define the precursors of task n as a set of tasks
that finish before task n starts in a schedule, i.e.

P̃ (n) :=
{

m ∈ N |tfm ≤ tsn

}

.

The unconditional probability that the task n will be com-
pleted successfully is

p̃c
n = p̃n ×

∏

m∈P̃ (n)

p̃m.

That is, the probability of successful completion of every
precursor and of the task n itself are considered independent
events. The reason this is calculated in such form is because,
if any task in P̃ (n) fails to be completed, there is no need
to execute task n.
The probability of receiving the final payment V is there-

fore

p̃ =
∏

n∈N

p̃n.

4.3 Example and Discussion
To illustrate the definitions and assumptions above, let’s

return to the task network in Figure 1 and consider a sample
task schedule in Figure 4. In this figure the x-axis is time,
the y-axis shows both the task numbers and for each indi-
vidual task it also shows the cumulative distribution of the
unconditional probability of completion (compare to Fig-
ure 2). Circle markers show start times tsn. Crosses indicate
both finish times tfn and success probabilities p̃n (numbers
next to each point). Square markers denote that the corre-
sponding task cannot span past this point due to precedence
constraints. Finally, the thick part of each CDF shows the
time allocation for the task.
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Figure 4: CE maximizing time allocations for the

plan in Figure 1 for r = −0.01.

In practice, the customer agent needs a way of collect-
ing the market information necessary to build and use the

model. The probability of success is relatively easy to ob-
serve in the market. This is the reason for introducing the
cumulative probability of success Φn and the probability of
success pn, instead of the average project life span or prob-
ability of failure or hazard function. Indeed, it is rational
for the supplier to report a successful completion immedi-
ately in order to maximize the present value of a payment.
Also it is rational not to report a failure until the last possi-
ble moment due to a possibility of earning the payment by
rescheduling, outsourcing or somehow else fixing the prob-
lem.
To be specific, the information that the agent needs to

collect is the empirical distribution of how long does it take
from the point of starting some task to the point its com-
pletion is reported. This data, unlike the data on failures or
actual positions in the supplier’s schedule is less likely to be
private or unobservable.

5. MAXIMIZATION

5.1 Gamble Calculation Algorithm
Given a schedule, like the one shown in Figure 4, we need

to compute the payoff probability and then maximize the
CE for the gamble. Writing an explicit description of the
expected utility as a function of gambles is overly compli-
cated and relies on the order of task completions. Instead we
propose a simple recursive algorithm that creates these gam-
bles. We then maximize the CE over the space of gambles.
The proposed algorithm does not depend on the structure
of the task network, but on the number of tasks scheduled
in parallel.

Algorithm: G← calcGamble(T,D)
Requires: T “tasks to process”, D “processed tasks”
Returns: G “subtree gamble”

M ← {m ∈ T |P̃ (m) ⊂ D}
if M 6= ∅ “it’s a branch”

n← first{M} “according to some ordering”
T ← T \ {n}
G← ∅
E ← calcGamble(T,D) “follow . . .→ n̄ path”
forall (x, p) ∈ E

G← G ∪ {(x, p× (1− p̃n)})
endfor

I ← calcGamble(T,D ∪ {n}) “follow . . .→ n path”
forall (x, p) ∈ I

G← G ∪ {(x+ c̃n, p× p̃n)}
endfor

return G “subtree is processed”
else “it’s a leaf ”

if N = D “all tasks are done”
return {(V, 1)}

else “some task failed”
return {(0, 1)}

endif

endif

In the first call the algorithm receives a “todo” task list
T = N and a “done” task listD = ∅, all the subsequent calls
are recursive. To illustrate the idea behind this algorithm,
we refer to the payoff-probability tree in Figure 6. This tree
was built for the time allocations in Figure 5 and reflects
the precursor relations for this case.
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Figure 5: CE maximizing time allocations for the

plan in Figure 1 for r = 0.02.

Looking at the time allocation, we note that with proba-
bility 1 − p̃1 task 1 fails, the customer agent does not pay
or receive anything and stops the execution (path 1̄ in the
tree). With probability p̃c

1 = p̃1 the agent proceeds with task
3 (path 1 in the tree). In turn, task 3 either fails with proba-
bility p̃1×(1− p̃3), in which case the agent ends up stopping
the plan and paying a total of c1 (path 1 → 3̄), or it is
completed with the corresponding probability p̃c

3 = p̃1 × p̃3.
In the case where both 1 and 3 are completed, the agent

starts both 2 and 4 in parallel and becomes liable for paying
c2 and c4 respectively even if the other task fails (paths
1 → 3 → 2 → 4̄ and 1 → 3 → 2̄ → 4). If both 2 and 4
fail, the resulting path in the tree is 1 → 3 → 2̄ → 4̄ and
the corresponding payoff-probability pair is framed in the
figure.

5.2 Computational Complexity
The computational complexity of the maximization pro-

cedure is determined by two parameters: first, the procedure
itself is a non-linear maximization over 2N choice variables
with internal precedence constraints. Second, to calculate a
certainty equivalent value for every time schedule, the max-
imization procedure should be able to build a corresponding
gamble and compute its expected utility.
For maximization we use the Nelder-Mead simplex (direct

search) method from the Matlab optimization toolbox.
The complexity of the calcGamble algorithm shown be-

fore is O
(

2K−1 ×N
)

, where K is the maximum number of
tasks that are scheduled to be executed in parallel.
The complexity estimate is based on the observation that

the depth of the payoff-probability tree is N and that any
subtree following an unsuccessful task execution has a depth
of no more than K− 1. The last statement follows from the
assumption that there are no more than K − 1 tasks run-
ning in parallel to the one that failed and therefore no other
tasks will start after the failure was reported. Whether it is
possible to create an algorithm with significantly lower com-
putational costs is one of the questions we plan to address
in future research.
In commercial projects the ratio K/N is usually low, since
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Figure 6: Payoff-probability tree for the time allo-

cations in Figure 5.

not many of these exhibit a high degree of the parallelism.
Our preliminary experiments, reported in Section 5.3, allow
us to conclude that K/N ratio is likely to be lower for risk-
averse agents (presumably, businessmen) than for risk-lovers
(gamblers).

5.3 Preliminary Experimental Results
We have conducted a series of experiments on the CE

maximization. Some of the results are summarized in Fig-
ure 7. In this figure, the y-axis shows 11 different risk-
aversity r settings, the bottom x-axis — time t in the plan,
and the top x-axis — maximum CE value for each r setting.
The rounded horizontal bars in each of 11 sections denote
time allocations for each of six tasks with task 1 being on
top. Sections r = −0.01 and r = 0.02 correspond to Fig-
ure 4 and Figure 5 respectively. Finally, the vertical bars
show the maximum CE values.
Let’s examine the relative placement of time allocations

as a function of r. For this purpose we highlighted task 3
(black bars) and task 4 (white bars). Here task 3 has higher
variance of CDF and lower probability of success than task
4 (0.032 and 0.95 vs. 0.026 and 0.98), also task 3 is more
expensive (−15 vs. −7). There are four different cases in
the experimental data:

1. Risk-loving agents tend to schedule tasks in parallel
and late in time in order to maximize the present value
of expected difference between reward and payoffs to
suppliers. This confirms the intuition from Figure 3 –
risk-lovers lean toward receiving high risky payments
rather than low certain payments.

2. Risk neutral and low risk-averse agents place risky task
3 first to make sure that the failure doesn’t happen
too far in the project. Note, that they still keep task
2 running in parallel, so, in case 2 fails, they are liable
for paying the supplier of task 4 on success. One can
consider those agents as somewhat optimistic.

3. Moderately risk-averse agents try to dodge the situa-
tion above by scheduling task 3 after task 2 is finished.
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Figure 7: CE maximizing schedules and CE values for the plan in Figure 1 and r ∈ [−0.03, 0.07].

These agents are willing to accept the plan, but their
expectations are quite pessimistic.

4. Highly risk-averse agents shrink task 1 interval to zero,
thus “cheating” to avoid covering any costs. One may
interpret this as a way of signaling a refusal of accept-
ing the plan.

6. ISSUES AND FUTURE RESEARCH

6.1 Multiple Local Maxima
One of the open issues is the existence of multiple local

maxima of CE, even in cases where task networks are fairly
simple. The reason for this is that the relative task place-
ment has two preferred configurations: independent individ-
ual tasks can be either performed in parallel (thus increas-
ing the probability of successful completion) or they can be
scheduled in sequence to minimize overall payoffs, in case
one of tasks fails.
To illustrate the issue, we constructed a sample task net-

work with two parallel tasks. Task 1 has a higher variance of
completion time probability and lower probability of success
than task 2, everything else is the same. The resulting graph
of CE is shown in Figure 8. There are 3 local maxima in this
figure: one in the left side that corresponds to task 2 being
scheduled first in sequential order, another on the right side
corresponding to task 1 being first, and yet another one in

the furthermost corner of the graph representing both tasks
being scheduled at time 0 and executed in parallel.
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Figure 8: Local maxima for two parallel tasks.

In the course of the research, we were able to get around
the issue of multiple local maxima by starting the maximiza-
tion procedure from different points. However, one may note
that the number of possible start points grows considerably
with the complexity of the task network and the algorithm
that checks each and every one of them is not scalable. A so-
lution we are considering is to use Simulated Annealing [20],



where each node in the search queue represents a local max-
imum for some particular ordering of tasks.

6.2 Slack Allocation in RFQ
The last issue we want to address in this paper is how

to use the CE maximization procedure to construct RFQs
in the MAGNET framework. The CE maximizing sched-
ule contains information on what is the most desirable task
scheduling for the customer agent. However, it is hard to
imagine that there will always be bids that cover exactly the
same time intervals as in the maximizing schedule.
We suggest the following approach: first, specify what

percentile α of the maximum CE value is considered accept-
able by the agent. then define the start time for the task
n as the set of values of tsn, such that the CE of a schedule
that differs from the maximizing one only in the start time
of task n is no less than α of the maximum.
Graphically, this process is represented by building the

projection of the CE α-percentile graph (see Figure 9) on
the task n time axis. Assuming there is only one continuous
interval of tsn values for every n ∈ N , denote it as

[

ts−n , ts+n
]

.

Finally, submit the interval
[

ts−n , tfn +
(

ts+n − t
s
n

)]

, where tsn
and tfn are times from the maximizing schedule, as a part of
the RFQ.
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Figure 9: Contours of some α-percentile graphs for
the CE graph in Figure 8.

This leaves several open questions for further study. For
instance, there could be more than one interval

[

ts−n , ts+n
]

for some tasks, so we need to distinguish them in the RFQ
composition. Also, it might be appropriate to decrease the
acceptable CE percentile for tasks involving goods and ser-
vices that are rare and do not attract many bids, and, at
the same time, increase the percentile for those tasks that
receive overly many bids. In addition, the RFQ might have
to be split in two or more parts, so that the requests for
rare goods and services are submitted first and the rest of
RFQ is composed after the bids for those rare products are
received. Deciding how and when to split the RFQs is still
an open question.
Although we do not specifically address the above men-

tioned and related issues in the current paper, the CE max-
imization approach promises to be powerful and flexible
enough to help us resolve those in our future research.

7. RELATED WORK
Expected Utility Theory [19] is a mature field of Eco-

nomics, that has attracted many supportive as well as crit-
ical studies, both theoretical [12, 13] and empirical [23, 10].
We believe that expected utility will play an increasing role
in automated auctions, since it provides a practical way of
describing risk estimations and temporal preferences.
In our previous work on Expected Utility [1] we were

mostly concerned with computing the marginal expected
utility of completing successfully all the tasks within the
duration promised.
Our long term objective is to automate the scheduling

and execution cycle of an autonomous agent that needs the
services of other agents to accomplish its tasks. Pollack’s
DIPART system [18] and SharedPlans [7] assume multi-
ple agents that operate independently but all work towards
the achievement of a global goal. Our agents are trying to
achieve their own goals and to maximize their profits; there
is no global goal.
Combinatorial auctions are becoming an important mech-

anism not just for agent-mediated electronic commerce [8,
26, 22] but also for allocation of tasks to cooperative agents
(see, for instance, [9, 5]).
In [9] combinatorial auctions are used for the initial com-

mitment decision problem, which is the problem an agent
has to solve when deciding whether to join a proposed col-
laboration. Their agents have precedence and hard tem-
poral constraints. However, to reduce search effort, they
use domain-specific roles, a shorthand notation for collec-
tions of tasks. In their formulation, each task type can be
associated with only a single role. MAGNET agents are
self-interested, and there are no limits to the types of tasks
they can decide to do. In [6] scheduling decisions are made
not by the agents, but instead by a central authority. The
central authority has insight to the states and schedules of
participating agents, and agents rely on the authority for
supporting their decisions. Nisan’s bidding language [16] al-
lows bidders to express certain types of constraints, but in
MAGNET both the bidder and the bid-taker (the customer)
need to communicate constraints.
Inspite of the abundance of work in auctions [15], lim-

ited attention has been devoted to auctions over tasks with
complex time constraints and interdependencies. In [17],
a method is proposed to auction a shared track line for
train scheduling. The problem is formulated with mixed
integer programming, with many domain-specific optimiza-
tions. Bids are expressed by specifying a price to enter a
line and a time window. The bidding language, which is
similar to what we use in MAGNET, avoids use of discrete
time slots. Time slots are used in [25], where a protocol for
decentralized scheduling is proposed. The study is limited
to scheduling a single resource. MAGNET agents deal with
multiple resources.
Most work in supply-chain management is limited to hi-

erarchical modeling of the decision making process, which is
inadequate for distributed supply-chains, where each orga-
nization is self-interested, not cooperative. Walsh et al [24]
propose a protocol for combinatorial auctions for supply
chain formation, using a game-theoretical perspective. They
allow complex task networks, but do not include time con-
straints. MAGNET agents have also to ensure the schedul-
ing feasibility of the bids they accept, and must evaluate risk
as well. Agents in MASCOT [21] coordinate scheduling with



the user, but there is no explicit notion of money transfers
or contracts, and the criteria for accepting/rejecting a bid
are not explicitly stated. Their major objective is to show
policies that optimize schedules locally [11]. Our objective
is to optimize the customer’s utility.
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