
Scheduling Tasks with Precedence Constraints
to Solicit Desirable Bid Combinations

Alexander Babanov
Dept of Computer Science

and Engineering
Dept of Economics

University of Minnesota

babanov@cs.umn.edu

John Collins
Dept of Computer Science

and Engineering
University of Minnesota

jcollins@cs.umn.edu

Maria Gini
Dept of Computer Science

and Engineering
University of Minnesota

gini@cs.umn.edu

ABSTRACT
In our previous research we suggested an approach to max-
imizing agents preferences over schedules of multiple tasks
with temporal and precedence constraints. The proposed
approach is based on Expected Utility Theory. In this pa-
per we address two mutually dependent questions: (a) what
are the properties of the problem domain that can facilitate
efficient maximization algorithms, and (b) what criteria de-
termine attractiveness of one or another potential solution to
the agent. We discuss different ways of exploring the prob-
lem domain. We show that naive optimization approaches
often fail to find solutions for risk-averse agents and pro-
pose ways of using properties of the domain to improve upon
naive approaches.

Categories and Subject Descriptors
K.4.4 [Computers and Society]: E-commerce; I.2.11 [Ar-
tificial Intelligence]: Distributed Artificial Intelligence;
G.1.6 [Numerical Analysis]: Optimization

General Terms
Algorithms, Economics, Theory

Keywords
Automated auctions, multi-agent contracting, expected util-
ity, risk estimation

1. INTRODUCTION
We are interested in developing methods for soliciting de-

sirable bids for collections of tasks with complex time con-
straints and interdependencies. By desirable we mean bids
that can be feasibly combined in a low cost combination
that covers the entire collection of tasks. We also want to
receive the “right” number of bids. Too many bids will cause

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
AAMAS’03, July 14-18, 2003, Melbourne, Australia.
Copyright 2003 ACM 1-58113-480-0/02/0007 ...$5.00.

the winner determination algorithm to take excessive time,
and are also undesirable for the suppliers because each bid
represents a speculative resource commitment and reveals
private information. Soliciting too few bids brings in a risk
of not covering some tasks. To balance these extremes we
need a way of managing schedule flexibility with respect to
particular tasks.
We address aforementioned problem in the context of the

MAGNET (Multi-AGent NEgotiation Testbed) research pro-
ject. MAGNET agents participate in first-price, sealed-bid,
reverse combinatorial auctions over collections of tasks with
precedence relations and time constraints. An agent who
wants to request services or resources from other agents does
so by first preparing a Request for Quotes (RFQ) to solicit
bids. The RFQ includes not only the tasks but also the time
windows when the tasks should be executed.
Because of the dependencies among the tasks, a task not

completed on time might have devastating effects on other
tasks. Therefore, a major problem is to decide how to se-
quence the tasks and how to allocate time to each of them.
Since the RFQ is issued before bids are received, we need
to make these decisions using expected costs, probability
of completion of tasks within a time window, and expected
numbers of bidders. Since there is a probability of loss as
well as a probability of gain, the decision process must also
deal with the risk posture of the person or organization on
whose behalf the agent is acting.
In previous work [2] we proposed an approach based on

Expected Utility Theory to compute an agent’s preferences
over different schedules for the tasks in an RFQ, and we
proposed an algorithm for computing the payoff-probability
outcomes of the different schedules. In this paper we discuss
how an agent may weigh its expectations of incoming bids’
quality, i.e. benefits in terms of costs and risks they might
offer, against the expected quantity of bids. To support
the discussion, we explore methods for exploiting features of
the problem domain to find schedules that maximize agent
preferences among various classes of possible schedules.

2. TERMINOLOGY
We use a task network (see Figure 1) to represent tasks

and the constraints between them. A task network is a
connected directed acyclic graph, where nodes denote tasks
with start and finish times, while edges indicate precedence
constraints. More formally, a task network is a tuple 〈N,≺〉
of a set N of individual tasks and strict partial ordering on

4

3

2

5

6

1

Figure 1: A task network example.

them. We also use N to denote the number of tasks.
A task network is characterized by a start time ts and a

finish time tf , which delimit the interval of time when tasks
can be scheduled.
The placement of an individual task n in the schedule is

determined by its start time tsn and finish time tfn, which are
subject to the following constraints:

ts ≤ tfm ≤ tsn, ∀m ∈ P1 (n)

tfn ≤ tsm ≤ tf , ∀m ∈ S1 (n)

where P1 (n) is the a set of immediate predecessors of n,
P1 (n) = {m ∈ N |m ≺ n, @m′ ∈ N, m ≺ m′ ≺ n}. S1 (n) is
defined similarly as the set of immediate successors of n.
The probability of task n completion by time t, condi-

tional on the eventual completion of task n, is distributed
according to a cumulative distribution function (CDF) Φn =
Φn (tsn; t), limt→∞ Φn (tsn; t) = 1. Observe that Φn is de-
fined to be explicitly dependent on the start time tsn. This
enables us to represent situations such as weekends and sea-
sonal market changes that may affect resource availability
along with durations and completion probabilities.
There is an associated unconditional probability of success

pn ∈ [0, 1] characterizing the percentage of tasks that are
successfully completed given infinite time. Together with
Φn it captures the distribution of successful task completion
with no regard to whether the task succeeds or fails by the
end of time (see Figure 2).

pn

t

pnΦn(t
s

n
; t)

1

Figure 2: Unconditional distribution for successful

completion probability.

We assume the cost of task n, cn, is due at some time after
successful completion of n. There is a single final payment
W scheduled at the time moment, by which all tasks have
to be completed, i.e. maxn∈N tfn, and paid if each and every
task is completed successfully.
Each payoff cn has an associated rate of return qn

1. We
associate the rate of return q with the final payment W . A
monetary transfer x due at time t and its associated rate of
return qx are used to calculate the discounted present value

1The reason for having multiple qn’s is that individual tasks
can be financed from different sources, thus affecting task
scheduling.

(PV) x̃ as

x̃ := x (1 + qx)
−t .

3. EXPECTED UTILITY
We represent the customer agent’s preferences over payoffs

by the von Neumann-Morgenstern utility function u. We
further assume that the absolute risk-aversion coefficient [6]
r := −u′′/u′ of u is constant for any value of its argument,
hence u can be represented as follows2:

u (x) =

{

− exp {−rx} for r 6= 0
x for r = 0

A gamble is a set of payoff-probability pairs G =
{

(xi, pi)i
}

s.t. pi > 0, ∀i and
∑

i
pi = 1. The expectation of the utility

function over a gamble G is the expected utility (EU):

Eu [G] :=
∑

(xi,pi)∈G

piu (xi)

The certainty equivalent (CE) of a gamble G is defined
as the single monetary value whose utility matches the ex-
pected utility of the entire gamble G, i.e. u (CE [G]) :=
Eu [G]. Hence under our assumptions

CE(G) =

−1
r log

∑

(xi,pi)∈G
pi exp {−rxi} for r 6= 0

∑

(xi,pi)∈G
pixi for r = 0

The concept of the certainty equivalent is crucial for our
further consideration due its useful properties. One of these
properties is that unlike expected utility, CE values can be
compared across different values of risk aversity r, since they
represent certain monetary transfers measured in present
terms. Naturally, an agent will not be willing to accept
gambles with less than positive CE values and higher CE
values will correspond to more attractive gambles.

3.1 Cumulative Probabilities
To compute the certainty equivalent of a gamble we need

to determine a schedule for the tasks and compute the payoff-
probability pairs.
We assume that a payoff cn for task n is scheduled at tfn,

so its present value c̃n
3 is

c̃n := cn (1 + qn)
−tf

n

We define the conditional probability of task n success as

p̃n := pnΦn

(

tsn; t
f
n

)

.

We also define the precursors of task n as a set of tasks
that finish before task n starts in a schedule, i.e.

P̃ (n) :=
{

m ∈ N |tfm ≤ tsn

}

.

The unconditional probability that the task n will be com-
pleted successfully is

p̃c
n = p̃n ×

∏

m∈P̃ (n)

p̃m.

2Although the shape of utility function for negative values
of r may contradict intuition, it must be noted that we do
not consider EU values directly and use this formulation for
the uniformity of notation.
3Hereafter we use tilde to distinguish variables depending
on the current task schedule.

That is, the probability of successful completion of every
precursor and of the task n itself are considered independent
events. The reason this is calculated in such form is because,
if any task in P̃ (n) fails to be completed, there is no need
to execute task n.
The probability of receiving the final payment W is

p̃ =
∏

n∈N

p̃n.

3.2 Tree Form of CE Calculation
In Figure 3 we show two alternate schedules for the task

network of Figure 1, and in Figure 4 we see the gamble
calculation corresponding to these schedules. Looking at the
first task, we note that with probability 1−p̃1 task 1 fails, the
customer agent does not pay or receive anything and stops
the execution (path 1̄ in the tree). With probability p̃c

1 = p̃1

the agent proceeds with task 3 (path 1 in the tree). Before
task 3 is completed, the agent starts task 4. If task 3 fails,
the agent is liable for paying c1 and c4 (paths 1 → 3̄ → 4)
or c1 if task 4 also fails (path 1→ 3̄→ 4̄). In turn, if task 3
succeeds, the agent starts task 2 before task 4 is completed.
If both tasks 4 and 2 fail, the resulting path in the tree is
1 → 3 → 4̄ → 2̄ and the corresponding payoff-probability
pair is framed in the figure.

1

3
4

2

5
6

2

5
6

4
3

1

Figure 3: Two schedules for the task network of

Figure 1.

�
0

1̄

1 3̄

�
c̃1

4̄
p̃1 × p̃3 × (1− p̃4)× (1− p̃2)

�
c̃1 + c̃4

4

3
4̄

�
c̃1 + c̃3

2̄

�
c̃1 + c̃2 + c̃3

2

4
2̄

�
c̃1 + c̃3 + c̃4

5̄
�

c̃1 + c̃3 + c̃4 + c̃5

5

2
�

c̃1 + . . . + c̃4

5̄

5
�

c̃1 + . . . + c̃5

6̄

	
c̃1 + . . . + c̃6 + W̃

6

Figure 4: Payoff-probability tree corresponding to

two schedules in Figure 3.

1

2

3

4

5

6

Figure 5: An irreducible task network example.

3.3 Maximization Issues
There are several important observations we have derived

by closely studying the suggested form of the expected util-
ity function. First, even for simple cases (e.g., a network of
two parallel tasks) there exists a multitude of local maxima
that may differ significantly in attained utility values. The
large number of local maxima is caused mainly by two fac-
tors: major variations due to different ordering of tasks that
significantly impact CE values4 and small variations due to
different scheduling of tasks that are not stressed by time.
For example, assume that it takes a full week to complete

task 2 with high probability of success and it only takes 2
days for each of tasks 3, 4 and 5.Then, a maximizing sched-
ule where tasks 3 and 4 are scheduled in parallel to each
other and to task 2 will often have at least two correspond-
ing maximizing schedules where tasks 3 and 4 are scheduled
sequentially.
Our second observation is that the analytical form of the

CE function is too complex to be of any practical use beyond
a few special cases, such as a simple sequence of tasks. Al-
though it is possible to write a relatively simple CE function
expression for each way of ordering the tasks in a schedule
(i.e. for each payoff-probability tree), the number of pos-
sible orderings grows exponentially with the complexity of
the problem (we address this in the next Section). At the
same time it is easy to calculate the CE function numerically
using the tree building algorithm from [2].
Because of these observations we have decided to study

the domain by (a) using numerical maximization methods,
and (b) thoroughly exploring different task orderings to en-
sure that no configuration escapes our consideration.

4. TASK ORDERING
In a given task network, there may be many different ways

to order the individual tasks that are consistent with the
precedence relationships and yet result in different payoff-
probability trees. We divide task networks into two cate-
gories: reducible, which can be reduced to a single equivalent
task by recursively merging sequential and parallel tasks,
and irreducible. Examples of reducible and irreducible task
networks are shown in Figure 1 and Figure 5 respectively.
To remove ambiguity in distinguishing between task or-

derings, we also assume that no two task start and/or finish
times can be exactly equal. Under this assumption sched-
ules where some start and finish times coincide will belong
to two or more task orderings.
We start by considering simple cases of reducible networks

and build up an apparatus to enumerate task orderings for
arbitrary task networks, whether they are reducible or not.

4One may think of these tasks as if they are on the critical
path, but this analogy is misleading since in our formulation
the impact of a task on CE value depends on a schedule.

11 11

c1 cm

(b) (c)

N1, c1

Nk, ck

k k k k
..

.

..
.

(a) ..
.

Figure 6: Counting scenarios.

4.1 Counting in Reducible Task Networks
Let’s consider first a task network that consists of k par-

allel sequences of Ni, i = 1, . . . , k tasks each. We associate a
set of 2Ni balls with each of k sequences, one ball to denote
the start time of some task and another to denote its finish
time. Since inside each sequence the order of task start and
finish times is uniquely defined by precedence relations, we
label all 2Ni balls in each sequence by the number i (see

Figure 6(a)). The number of orderings C(a) of task start
and finish times corresponds to the number of orderings of
k sets of balls, i.e.

C(a) =

(

2
∑

i∈I
ki

)

!
∏

i∈I
(2ki)!

The number C(b) of orderings for m sequential task net-
works of an arbitrary (not necessarily reducible) configu-
ration, where each network has cj , j = 1, . . . , m possible
orderings by itself (Figure 6(b)) is clearly

C(b) =
m
∏

j=1

cj

Finally, we count the number C(c) of orderings in the case
of k parallel task networks of arbitrary configuration, where
each network i, i = 1, . . . , k consists of Ni tasks with ci pos-
sible combinations on them (Figure 6(c)). To do this we first
enumerate the possible orderings assuming that the order of
task start and finish times is fixed inside each network i,
and then account for the number of ways to fix the order
independently in each task network i, i.e. ci,

C(c) =

(

2
∑k

i=1 ni

)

!
∏k

i=1(2ni)!

k
∏

i=1

ci

4.2 Counting in Irreducible Networks
For the cases where either it is impossible to reduce a

task network or, in general, when one wants a universal way
of enumerating orderings of task start and finish times in
arbitrary networks, we propose the following algorithm. It
starts by assuming that no task was started or finished yet
and proceeds recursively by examining cases when one of
tasks that can be started next is started or one of the tasks
that have been started already is completed:

Algorithm: C∀ ← calcOrderings(T, D)
Requires: T “started tasks”, D “finished tasks”
Returns: C∀ “number of orderings”

X ← {i ∈ N |P1(i) ⊂ D, i 6∈ T ∪D} “tasks to start”

if X ∪ T = ∅ “all tasks are done”
C∀ ← 1

else “can start of finish some tasks”
C∀ ← 0
foreach i ∈ X “start task i”

C∀ ← C∀ + calcOrderings(T ∪ {i}, D)
endfor

foreach i ∈ T “finish task i”
C∀ ← C∀ + calcOrderings(T \ {i}, D ∪ {i})

endfor

endif

return C∀

4.3 Examples
Let’s consider a few examples of using the counting meth-

ods described in this Section, starting with the task network
in Figure 1. First we find the number of orderings in a net-
work of parallel tasks 3 and 4 to be 6, in accordance with
formula for C(a). Next, we consider a network of tasks 2 to
5 as consisting of two parallel networks, one with one task
and one ordering, and the other with 3 tasks and 6 order-
ings. This, by a trivial application of rule for C(b), gives
a total number of orderings equal to 168 (out of 7,484,400
orderings possible in a network of 6 tasks and no precedence
constraints).
The number of orderings in the task network in Figure 5

has to be calculated using the calcOrderings algorithm. It
is equal to 517 and thus is quite different from the one calcu-
lated before, although the number of tasks, 6, and the num-
ber of precedence constraints, 7, are equal for both cases.
Clearly, the number of orderings can grow exponentially

with the number of tasks. However, precedence constraints
may reduce this growth; in the case where all the tasks are
in a single sequence, there is just one ordering. This obser-
vation emphasizes the need for understanding the problem
domain in order to construct efficient maximization algo-
rithms that will not require the exploration of all possible
orderings to find desirable maxima5.

5. MAXIMIZATION METHODS
Our initial attempt to explore the local maxima space was

to use unconstrained maximization6 with all precedence and
order constraints internalized within the calculation of the
certainty equivalent CE. This approach made it possible to
find the global maximum of CE after a large number of
restarts from random points in a 2N–dimensional space of
task start and finish times [2]. However, it also produced
many “blind maxima” — points which wrongfully appeared
to be maxima to the maximization algorithm because of
constraints handling inside the calculations of CE. This ap-
proach was abandoned until we find a better way of inter-
nalizing constraints.
In this section we consider a variety of methods that we

designed to tackle the problem of maximizing the CE func-
tion. The methods are illustrated using the experimental
data from exploring the sample task network in Figure 1.

5Our favorite motivational example is that the addition of
a sequence of just two tasks parallel to the task network
in Figure 5 increases the number of orderings from 517 to
940,940.
6In particular, the Matlab implementation of Nelder-Mead
direct search method in fminsearch.

1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9
101

102

103

104

105

106

PM
2

CE

Figure 7: Local and pseudo-maxima found by the

“loose ” method, task network of Figure 1, and r = 0.

The general results were tested and remained applicable to
several other networks including the irreducible task net-
work in Figure 5.

5.1 Constrained Maximization Methods
We designed and tested three maximization approaches

that utilize the ability to enumerate all possible orderings of
task start and finish times. We call these methods “loose,”
“strict” and “nice” for the reasons that will become clear
later. Each method is initialized by random schedules that
satisfy the corresponding set of constraints.

“Loose” and “Strict” Maximizations
The “loose” method has its set of constraints defined by
the precedence relations and time constraints as specified in
Section 2.
The “strict” maximization method further restricts the

“loose” method by adding task ordering constraints to the
set, thus ensuring that every maximum found will have the
same ordering of task times as in the initial point. The
number of additional constraints introduced by this method
depends on the selected ordering. For example, for our sam-
ple problem in Figure 1 it varies from 2 to 7.
Unfortunately, both of these methods have a major draw-

back which prevents us from using them to study the domain
reliably. The issue is that they produce a large number of
pseudo-maxima in cases where the maximization algorithm7

is stuck on a plateau with a very small and irregular slope.
The results produced by the “loose” method for our sam-

ple problem and a risk-neutral agent are shown in Figure 7,
where each dot corresponds to some local or pseudo-maximum.
In this figure the y–axis shows CE values and x–axis rep-
resents a quadratic measure of schedule {tsn, tfn}n∈N paral-
lelism, which attempts to capture all 12 dimensions of task
start and finish times in one measure.
We define the measure of parallelism of degree x as

PMx(·) =

{

1

tf − ts

∫ tf

ts

[

∑

n∈N

1t∈[ts
n

,tf
n
]

]x

dt

}
1

x

The use of a quadratic (x = 2) measure is motivated by

7We use fmincon from Matlab that implements a sequential
quadratic programming method with a numerical updating
of the Hessian on every step.

our expectation that schedules with higher number of par-
allel tasks will be less attractive to risk-averse agents due
increasingly higher risk of payoffs after one of the parallel
task fails.

“Nice” Maximization
The “nice” method was created in the attempt to fix the
pseudo-maxima problem by projecting a set of precedence
and order constraints in a space where they do not interact
directly. To achieve this we fix the order of task start and
finish times, and build a correspondence between points x̄
of a (2N +1)–dimensional unit cube and the ordered vector
of 2N task times. This many-to-one correspondence reflects
proportions in which task start and finish times divide the
[ts, tf] interval. Figure 8 illustrates the suggested variable
transformation for the network consisting of two sequential
tasks.

2

1

x1 x2 x3 x4 x5

ts ts1 tf1 ts2 tf2 tf

x̄

Figure 8: Transformation of a point in 5–

dimensional unit cube to a 2-task schedule.

This approach works remarkably well and produces nice,
hence its name, local maxima without artifacts like “blind
maxima” or pseudo-maxima described above. The transi-
tion from zero of the unit cube is not defined. However,
in our experience this never caused a problem, presumably
because the CE function is always flat in the direction of
zero.
The results produced by the “nice” maximization for the

sample problem and r = 0 are shown in Figure 9 in the same
scale as the results for the “loose” method in Figure 7. The
comparison of Figures 7 and 9 reveals that the bulk of points
in the former are, indeed, pseudo-maxima corresponding to
unsuccessful attempts to reach clusters of maxima distinctly
displayed in the latter.

5.2 Domain-Specific Methods
One important observation is derived from our experi-

ments that renders all three methods above nearly useless for
the cases we are interested in, i.e. for risk-averse (business
people, not gamblers) agents. All three methods are “lazy,”
meaning that, being initialized with a random schedule that
results in a negative CE value, they converge to a degener-
ate local maximum with one or more task durations equal to
zero. This may be interpreted as a way of signaling rejection
of the plan, and although it is useful in general, it dominates
maximization results in cases with positive risk-aversity.
We approached the problem of poor maximization perfor-

mance by guessing and verifying the properties of the CE
function in the task network environment. These efforts led
to the creation of two approaches that we refer to as “boost”
and “copycat” maximization methods.

“Boosted” Maximization
This method arises from the intuition that lowering the final
payoff might change a schedule somewhat, but will not lead

1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9
101

102

103

104

105

106

PM
2

CE

Figure 9: Local maxima found by the “nice” ap-

proach in the same setup as in Figure 7.

to abandoning it completely unless its CE value becomes
negative. Guessing this, we “float” the search space by in-
creasing the final payoff (in these experiments we doubled
it) to get a maximizing schedule. We then restart the maxi-
mization procedure starting with this maximizing schedule,
using the actual payoff to get an adjusted schedule.
The following table shows the results of “boosting” each

of the three constrained maximization methods described
before in the case of the sample problem and a risk-neutral
agent. Each number in the table shows the number of CE
function maxima with positive CE values found after 100
restarts for each of 168 possible orderings (Section 4.3).

Method # max “boosted”
“loose” 404 660
“strict” 366 687
“nice” 410 1562

“Copycat” Maximization
The “copycat” method arises from the intuition that, al-
though the exact location and relative attractiveness of dif-
ferent maxima may change as the agent’s risk aversity changes,
these changes won’t likely be large. To verify this guess we
used maxima for risk-loving agents as initial points for max-
imizing CE functions of agents with higher risk-aversity.
The table below shows an example of applying the “copy-

cat” improvement to our “nice” method in the sample prob-
lem. The set of maxima for r = 0.03 was used to improve the
“nice” method’s performance for higher risk-aversity cases.
The results show that not only the number of maxima found
rises dramatically, but the maximum CE value among all
maxima increases as well.

“nice” “copycat nice”
r # max max CE # max max CE
0.06 0 0.00 149 3.66
0.05 0 0.00 6194 9.70
0.04 0 0.00 6195 19.32
0.03 0 0.00 6198 34.35
0.02 1 54.50 6198 57.46
0.01 36 84.77 6198 85.12
0.00 410 106.92 6198 106.92
-0.01 1602 118.13 6198 118.13
-0.02 3736 123.16 6198 123.16
-0.03 6198 125.64 — —.—

6. PROPERTIES OF THE DOMAIN
We have employed the “nice” method with “boost” and

“copycat” extensions to thoroughly study the properties of
task scheduling using CE function maximization. In this sec-
tion we illustrate our findings using the sample network in
Figure 1 and assumption of the risk-neutrality. The reason
we choose the risk-neutral agent’s case is due to our empir-
ical results showing that CE maximizing schedules will not
change much with r, although their value relative to each
other may and will change.

6.1 Quality and Quantity
Figure 10 exposes the structure of schedules behind some

of CE maxima shown in Figure 9. In this figure the bottom
x–axis represents time. There are 11 schedules represented
by rounded horizontal bars in the same manner as in the
previous figures. Each schedule is assigned a letter on the
y–axis and in each schedule task 3 is highlighted in white
color and task 4 in black. Finally, the top x–axis represents
the certainty equivalent and vertical heavy black bars show
the CE values attained in the corresponding schedules by
the risk-neutral agent.
By carefully examining this figure we conclude that CE

maximization discovered several distinct strategies of schedul-
ing tasks 2 to 5. The most successful strategy in this setup,
A, schedules as many tasks in parallel as possible to get a fi-
nal payment as soon as possible, hence increasing its present
value. Indeed, for r = 0 a random schedule has almost 80%
probability of converging to schedules A, C or I, in which
tasks 3 and 4 are parallel. K, though, has too many tasks
scheduled sequentially, thus running against the time limit.
One alternative is to schedule tasks 3 and 4 sequentially,

giving task 2 more time to run by scheduling it parallel to
three (as in E and G), two (B, H) or, at least, one and a half
(D, F) of other tasks. Attempts to give task 2 less time by
scheduling it parallel to task 4 reveal that scheduling tasks
3 and 4 in parallel is important to ensure necessary schedule
flexibility (compare J to C).
However, a schedule having highest CE value is not nec-

essary the most preferable one. In fact, by examining Fig-
ure 11 we see that schedule A has hardly any flexibility,
which is indicated by its very small support on the paral-
lelism measure axis. In contrast, strategy I allows for a
great flexibility in choosing time windows for tasks 3 and 4,
hence its large cluster of maxima points in CE–PM2 space.
The particular choice of one schedule over another must

depend on the availability of bids for each task. For exam-
ple, if a market has an abundance of task 3 and 4 suppliers, a
risk-neutral agent may safely choose schedule A as a base for
an RFQ [1] that will solicit desirable bid combinations. In
the case when one or both of these tasks are in rare supply,
the agent might prefer schedule I and trade its expecta-
tions of incoming bid quality, as expressed by the certainty
equivalent, for larger RFQ time windows and, thus, higher
expected number of bids.
We want to stress that an agent’s preferences over CE

maximizing schedules vary greatly with risk aversity. For
example, in Figure 12, schedule A turns to be less attractive
in the eye of a more risk-averse agent than schedules H, I
and even K. One cause of such change is that risk-averse
agents generally prefer “fail fast” approach that distributes
more time to the tasks that are late in the schedule.

101 102 103 104 105 106 107
CE

0 1 2 3 4 5 6 7 8 9 10

K

J

I

H

G

F

E

D

C

B

A

t

Figure 10: Structure and CE values for different clusters of CE maximizing schedules corresponding to

maxima in Figure 9.

1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9
101

102

103

104

105

106

PM
2

CE
A

K

J
I

H

B−G

Figure 11: Local maxima in Figure 9 annotated with

schedule labels from Figure 10.

6.2 Design of Domain-Specific Heuristics
Our findings showed that CE maximizing schedules have

different properties with regard to quality and quantity of
bids that are potentially solicited by the corresponding RFQs.
We also demonstrated that naive CE maximization approaches
do not perform well in interesting cases, but their perfor-
mance can be significantly improved by using domain prop-
erties. Finally, we concluded that the maximization meth-
ods that we use to explore the problem domain are hardly
useful in practice, as they rely on the task ordering enumer-

1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9
28

29

30

31

32

33

34

PM
2

CE

H

B
C

D
K

I
J

E,G

F

A

Figure 12: Change of local maxima structure in Fig-

ure 11 for r = 0.03.

ation and therefore are exponentially hard in a worst case.
As a result, we plan on designing heuristics that will let

agents effectively explore maximizing schedules of different
nature and choose desired quality-quantity pairs. One pos-
sible heuristic might be based on the observation that there
exist fairly obvious transitions between many maximizing
schedules (see Figure 13), such as rescheduling two tasks
from sequential ordering to parallel or other way around.
When designed, such heuristic will reduce the search prob-
lem from considering all task orderings and random sched-

ules to finding a few maxima and exploring near-optimal
schedules suggested by the heuristic.

B G I K

F A J

D C E H

Figure 13: Some simple transitions between sched-

ules in Figure 10.

Another potential approach would be to discover the ex-
act mechanism behind the changes in preferences over max-
imizing schedules for different degrees of risk-aversity. This
heuristic would allow us to concentrate search efforts on spe-
cific classes of schedules that are expected to be of interest
for agents with known risk-aversity.

7. RELATED WORK
Auctions are becoming a widely used mechanism not just

for agent-mediated electronic commerce [4, 10], but also for
allocation of tasks to cooperative agents [5, 3].
Despite the abundance of work in auctions [7], limited

attention has been devoted to auctions over tasks with com-
plex time constraints and interdependencies, as we do in
MAGNET. In [8], a method is proposed to auction a shared
track line for train scheduling. The problem is formulated
with mixed integer programming, with many domain-specific
optimizations. Bids are expressed by specifying a price to
enter a line and a time window. The bidding language,
which is similar to what we use in MAGNET, avoids use of
discrete time slots. Time slots are used in [13], where a pro-
tocol for decentralized scheduling is proposed. The study
is limited to scheduling a single resource. MAGNET agents
deal with multiple resources. Walsh et al [11] propose a pro-
tocol for combinatorial auctions for supply chain formation,
using a game-theoretical perspective. They allow complex
task networks, but do not include time constraints.
Agents in MASCOT [9] coordinate scheduling with the

user. Their major objective is to show policies that optimize
schedules locally. Our objective is to optimize the expected
customer’s utility before bids are submitted and schedules
are finalized.
The results reported in [12] on the problem difficulty in

job-shop scheduling show many similarities to the problems
we encountered in maximizing the certainty equivalent. Our
problem is not job-shop scheduling; we are not scheduling
resources the agent has, but we are producing a schedule of
tasks that other agents will do. Our objective is to schedule
tasks for the RFQ is a way that optimizes the expected
utility of the agent. Knowledge of the market, in terms of
expected number of bidders and probability of success, play
a role in our formulation, as well as knowledge of the risk
aversity of the agent.

8. CONCLUSIONS
We have presented a variety of methods for generating

schedules of tasks that maximize the expected utility of an
agent. In our future work we plan to study two domain-
specific heuristics suggested here as well as other possibili-
ties using the proposed maximization techniques. Our goals
include using created heuristics to design an efficient mecha-
nism for direct exploration of the CE maximizing schedules.

Such mechanism will be useful in studying the construction
of well-balanced RFQs, which solicit reasonable number of
bids with good risk-payoff characteristics.

9. ACKNOWLEDGMENTS
Partial support for this research is gratefully acknowl-

edged from the National Science Foundation under award
NSF/IIS-0084202.

10. REFERENCES
[1] A. Babanov, J. Collins, and M. Gini. Asking the right

question: Risk and expectations in multi-agent
contracting. Technical Report 02-034, University of
Minnesota, Department of Computer Science and
Engineering, Minneapolis, MN, 2002.

[2] A. Babanov, J. Collins, and M. Gini. Risk and
expectations in a-priori time allocation in multi-agent
contracting. In Proc. of the First Int’l Conf. on
Autonomous Agents and Multi-Agent Systems,
volume 1, pages 53–60, Bologna, Italy, July 2002.

[3] B. P. Gerkey and M. J. Matarić. Sold!: Auction
methods for multi-robot coordination. IEEE Trans.
Robotics and Automation, 18(5):758–786, October
2002.

[4] R. H. Guttman, A. G. Moukas, and P. Maes.
Agent-mediated electronic commerce: a survey.
Knowledge Engineering Review, 13(2):143–152, June
1998.

[5] L. Hunsberger and B. J. Grosz. A combinatorial
auction for collaborative planning. In Proc. of 4th Int’l
Conf on Multi-Agent Systems, pages 151–158, Boston,
MA, 2000. IEEE Computer Society Press.

[6] A. Mas-Colell, M. D. Whinston, and J. R. Green.
Microeconomic Theory. Oxford University Press, 1995.

[7] R. McAfee and P. J. McMillan. Auctions and bidding.
Journal of Economic Literature, 25:699–738, 1987.

[8] D. C. Parkes and L. H. Ungar. An auction-based
method for decentralized train scheduling. In Proc. of
the Fifth Int’l Conf. on Autonomous Agents, pages
43–50, Montreal, Quebec, May 2001. ACM Press.

[9] N. M. Sadeh, D. W. Hildum, D. Kjenstad, and
A. Tseng. MASCOT: an agent-based architecture for
coordinated mixed-initiative supply chain planning
and scheduling. In Workshop on Agent-Based Decision
Support in Managing the Internet-Enabled
Supply-Chain, at Agents ’99, pages 133–138, 1999.

[10] T. Sandholm. Algorithm for optimal winner
determination in combinatorial auctions. Artificial
Intelligence, 135:1–54, 2002.

[11] W. E. Walsh, M. Wellman, and F. Ygge.
Combinatorial auctions for supply chain formation. In
Proc. of ACM Conf on Electronic Commerce (EC’00),
October 2000.

[12] J. P. Watson, J. C. Beck, A. Howe, and L. D. Whitley.
Problem difficulty for tabu search in job-shop
scheduling. Artificial Intelligence, 2002.

[13] M. P. Wellman, W. E. Walsh, P. R. Wurman, and
J. K. MacKie-Mason. Auction protocols for
decentralized scheduling. Games and Economic
Behavior, 35:271–303, 2001.

