Harnessing the Search for Rational Bid Schedules
with Stochastic Search and Domain-specific Heuristics

Alexander Babanov, John Collins, and Maria Gini
Dept. of Computer Science and Engineering, University of Minnesota
{babanov,jcollins,gini} @cs.umn.edu

Abstract

In previous work we proposed an approach for comput-
ing an agent’s preferences over different schedules of tasks,
and for soliciting desirable bid combinations to cover the
tasks. The proposed approach finds schedules that maximize
the agent’s Expected Utility.

The maximization problem is hard because the domain
is piece-wise continuous, with the number of pieces and lo-
cal maxima growing exponentially in the worst case sce-
nario. For agents who are averse to taking risks, maximiza-
tion algorithms tend to converge to degenerate maxima of
no practical interest.

In this paper we demonstrate three different maximiza-
tion methods based on domain-specific heuristics. We also
present a new stochastic maximization approach and bench-
mark it in two substantially different problem setups.

1. Introduction

We describe and analyze the domain of agents who need
to schedule tasks with temporal and precedence constraints.
We are interested in situations where an agent does not have
sufficient resources for all the tasks and thus has to recruit
other agents to carry out those tasks. In our approach, an
agent issues a Request for Quotes (RFQ), accepts bids by
other agents, and evaluates the bids to determine the win-
ners of the auction [3].

The agent needs to balance tradeoffs between allocating
large time windows to give flexibility to suppliers and risk-
ing not being able to combine the bids into a feasible sched-
ule. Additional tradeoffs have to be made between accom-
plishing tasks fast to receive the final reward and risking
not having enough time to recover in case a task fails. To
help the agent arrive at a compromise we designed a mech-
anism that generates schedules for the RFQ based on Ex-
pected Utility Theory [1].

Previously [2] we demonstrated the complexity of an
agent’s decision process in such domain, and the failure of

Figure 1. A reducible task network A.

direct approaches to find optimal expected profit solutions
for agents who are averse to taking risks.

In this work we develop heuristics to effectively over-
come those problems. We perform a comprehensive study
of the domain’s properties using domain-specific heuristics
and maximization algorithms. We further use the obtained
results to design a fast stochastic method for solving the
agent’s problem, and to measure its performance.

2. Background

The work presented in this paper is part of the Multi-
AGent NEgotiation Testbed (MAGNET) project [3]. MAG-
NET agents participate in first-price, sealed-bid, reverse
combinatorial auctions over collections of tasks with prece-
dence and time constraints. We assume that an agent spec-
ifies tasks in the form of a task network — a collection of
tasks and transitive precedence relations between them.

Examples of task networks are shown in Figures 1 and
2. Both networks have the same number of tasks and the
same number of precedence constraints, however they dif-
fer in a fundamental way. The first task network is reducible
— it can be reduced to a single task by sequentially merg-
ing subsets of parallel and sequential tasks; the second net-
work is irreducible. In our research we found that it is pos-
sible to study reducible networks analytically, while irre-
ducible ones require an algorithmic approach [2]. For this
reason we perform our further analysis on these two net-
works.

Figure 2. An irreducible task network B.

An agent’s RFQ specifies preferred time windows for
tasks in the task network. The placement of task ¢ is char-
acterized by the task ¢ start time t§ and task % finish time
tf. Upon receiving bids, the agent uses the winner deter-
mination algorithm to select a feasible combination of bids
that covers the entire collection of tasks and maximizes the
agent’s preferences.

Our preliminary results show that the specifics of how
tasks are scheduled in a RFQ affect the quality and quan-
tity of bids [1]. We proposed to use Expected Utility The-
ory [11, 10] as a criterion for comparing different RFQs.
Expected utility provides a natural way of accounting for
the risk posture of the person or organization on whose be-
half the agent is acting, and for modeling the tradeoffs be-
tween risks and profit expectations. By maximizing the ex-
pected utility we can find rational RFQ compositions.

We represent the agent’s preferences over payoffs by the
utility function u:

u(z)=—eforr#0 u(z)=zforr=0.

Agents with positive r values are risk-averse, those with
negative r values are risk-loving. We are mainly interested
in risk-averse agents.

We assume that a future state of the world is described by
the set .S of all possible events. Each event s € S happens
with a non-zero probability ps and results in some mone-
tary payoff z5. We define a lottery L to be a set of payoff-
probability pairs,

L ={(2s,ps)} s.t. ps >0 and Zps =1

The expectations of the utility values over a lottery L are
captured by the von Neumann-Morgenstern expected utility

function:
Eu[L]:= Z piu(z;).
(z4,pi)EL
The certainty equivalent (CE) of a lottery L is defined as
the single payoff value whose utility matches the expected
utility of the entire lottery L, i.e. u (CE[L]) := Eu|[L].
Hence, under our assumptions:

_% log Z(Zi,pi)eL pie" "% forr £ 0
Z(Ziypi)GL piz; forr =0

The concept of certainty equivalent is crucial due to its
properties. Unlike expected utility, CE values can be com-
pared across different values of risk aversity r, since they
represent certain monetary transfers measured in present
terms. Naturally, an agent will not accept a lottery with a
negative CE value, and higher values will correspond to
more attractive lotteries.

Given a schedule, the agent needs to compute all the
payoff-probability pairs that constitute the lottery, i.e. needs
to compute how probable each outcome is and its payoff.

We represent the payoff-probability pairs in an event
tree, where an event corresponds to a set of failed and com-
pleted tasks. We assume that once a task fails, the agent can-
cels all tasks that were not yet started. Each task in progress
will proceed until its scheduled finish time, and is paid for
on success. If all the tasks in the task network are completed
successfully, the agent receives a final reward, which is paid
as soon as all tasks are successfully completed.

In the event tree in Figure 3, we note in the framed boxes
two payoffs and corresponding probabilities on two differ-
ent branches of the tree. The branches represent respectively
the situation when tasks 1 and 3 succeeded, task 4 and task 2
failed, and the situation when tasks 1 and 3 succeeded, task
4 failed, and task 2 succeeded. We ¢; to indicate the present
payoff for task 7.!

The unconditional probability that task ¢ will be com-
pleted successfully is computed as

5 =px [[i 1)

jeP(3)

where]5(1) is a set of the precursors of task ¢ — all tasks
that finish before task i starts in the schedule.

Each way of scheduling the tasks produces a different
lottery, and the CE values of each lottery might be differ-
ent. Our objective is to find CE maxima. As we will discuss
later, we do not need to find a global maximum, local max-
ima are often sufficient.

3. Properties of the Problem Domain

Our domain exhibits several properties that make it par-
ticularly hard to search for a global or, at least, predictably
good local maxima.

The CE function is piece-wise continuous. It is easy to see
that the certainty equivalent is a continuous function of task
start and finish times as far as it is restricted to one particu-
lar event tree. We argue that in almost all generic problems
there is a discontinuity of CE values between two arbitrar-
ily close schedules with different corresponding event trees.

1 All the variables that depend on the current task schedule are “wig-
gled.”

A
e

1

A

e | 51 % By x (1=) x (1= pu) |

SN s
\< 4 F—®Cl+C3+ G
3 2 5\0614-534—544—55

|151 ><253X152><(1—ﬁ4)|
2 - \~ -

]
\<4

\o<5

4

6/.El++55

6\-51+...+56+f/

Figure 3. A schedule and the corresponding
event tree.

Indeed, event trees change when the start time of some
task is scheduled in a different order with the finish time
of another task. Consider, for example, the schedule and its
corresponding event tree in Figure 3. If the agent changes
the order of task 4 finish time and task 5 start time, it is now
liable for paying on task 5 success even if task 4 fails. As-
suming that changes to the present values of payoffs and
the probabilities of success of all tasks are negligible, this
results in two payoff-probability pairs outlined in the event
tree being replaced with the following pairs contingent on
task 5 success:

(€1 + &3, p1P3(1 — P2)(1 — Pa)(1 — Ps))
(€1 + €3+ &, P1P3(1 — p2)(1 — Pa)Ps)
(61 + &2 + €3, Prp3pa(l — Pa)(1 — Ps))
(€1 + &2+ &3 + €5, P1D3P2(1 — Pa)Ps)
As long as ¢5 < 0 and ps > 0 this results in different CE
values of a schedule for a.e. value of the risk-aversity 7.

The number of the continuity intervals of the CE function
grows exponentially with the number of tasks in the worst
case scenario (parallel tasks with no constraints). Prece-
dence constraints in general will reduce this growth; in the
case where all the tasks are in a single sequence, there is
just one interval. However, even for simple task networks
the number of the intervals of continuity (each correspond-
ing to an event tree) is staggering.

o

168 (32) 940,940 (24,913)

Figure 4. Number of start and finish times or-
derings (and number of event trees).

Figure 4 demonstrates several task networks, including
our sample networks in Figures 1 and 2, together with the
number of feasible strict orderings of start and finish times,
and the number of corresponding event trees in parenthesis.
There is a one to many correspondence between the event
trees and the orderings. In our previous work we used the
orderings as a base for the maximization algorithms; in this
paper we use the event trees, which allows us to uniquely
match CE maxima to the intervals of continuity.

Each interval of continuity has its own local maximum.
Indeed, in all but special cases it has a degenerate maxi-
mum with zero CE value, which translates to abandoning
the plan altogether. It almost always has other degenerated
maxima with negative CE. And, sometimes, it also has one
or more maxima with positive CE values. This property ef-
fectively prevents us from arranging intervals in order of
clear preference, making the comprehensive exploration of
the event trees the only reliable way to find a global maxi-
mum.

Local maximization algorithms are “lazy”: given a start-
ing point with negative CE value, they tend to converge to
degenerate maximum with zero or negative value. More-
over, this “laziness” grows together with the risk-aversity.

Maximization algorithms are highly multidimensional.
Our previous study [2] showed that not every maximiza-
tion approach produces reliable results. Those which do,
require special coordinate systems with up to 2N dimen-
sions in addition to the original 2N

We do not know of any analytic formula for the expected
utility computation. In addition to this, we cannot put any
assumption on the probability of success distributions, since
we assume they are derived from the real-world data. Thus
we have to use a recursive algorithm for computing the
payoff-probability pairs each time we need to find a CE

value. This imposes a computational tax on every prospec-
tive maximization method.

%k %

To summarize the above, to find a global maximum in
our domain we have to explore every event tree using in-
trinsically ineffective and “lazy” methods. And even when
we do so, we are not guaranteed to succeed.

Nevertheless, our domain has a number of important
properties that we can use to create efficient domain-specific
maximization methods.

We can use a variety of continuation techniques to over-
come the “laziness” of the local maximization algorithms.
For example, we can start with finding a maximizing sched-
ule for a low risk-aversity value, and gradually increase the
risk-aversity to its real value while tracking changes to the
maximizing schedule. The same technique can be used with
increasing the final reward or adding extra time slack to the
plan.

We can decrease the impact of the high number of dimen-
sions by maximizing along some projection before pro-
ceeding with a full-dimensional maximization.

It is possible to use one maximizing schedule to find oth-
ers. We found that the large number of event trees and the
corresponding local maxima are due to changes in schedul-
ing tasks off the critical path. Not only such maxima are
similar to each other in CE values, they can also be derived
from each other [2] at a relatively small computational cost.

Most remarkably, we don’t have to find the global maxi-
mum, a good set of local ones will fare better in most cases.
The reason is that, when scheduling tasks for which there
are few suppliers, the agent might need a lot of time slack to
have any hope of receiving compatible bids [1]. The global
maximum will often correspond to a schedule where there
is no much slack left on the critical path and around it. Lo-
cal maxima, especially those with more tasks scheduled in
parallel, have more slack and hence might be preferable.

4. Direct Maximization Methods

In [2] we presented three constrained maximization ap-
proaches for studying the properties of the problem domain.
The first one of these methods was based on the explicit
enumeration of all precedence constraints, it produced a
large number of pseudo-maxima where the algorithm got
stuck on a plateau. Our attempt to improve this method by
imposing extra task ordering constraints produced nearly
the same results.

In our third and successful attempt we projected a set
of ordering constraints in a space where they do not inter-
act directly. To achieve this we fix the order of task start and
finish times, and build a correspondence between points of

Algorithm: C' <+ startTasks(T, D)
Requires: T' “started tasks”, D “finished tasks”
Returns: C' “number of orderings”

C+0
X « {i € N|P,(i) C D,i ¢ T U D} “tasks to start”
foreach Y € 2%\ {o}
C + C + finishTasks(T UY, D)
return C

Algorithm: C' «+ finishTasks(7’, D)
Requires: T “started tasks”, D “finished tasks”
Returns: C' “number of orderings”

if X UT = & “no tasks left to start”
C+1
else “can start some tasks”
C+0
foreach Y € 27\ {o}
C <+ C +startTasks(T'\ Y,DUY)
return C

Figure 5. Counting of event trees.

a (2N + 1)-dimensional unit cube and the ordered 2N—
dimensional vector of task times. This projection reflects
proportions in which task start and finish times divide the
[t*, t!] interval.

Two disadvantages of the last method are: (a) the large
number of possible task orderings that must be investigated
in the search for global maxima, (b) many-to-one corre-
spondence between task orderings and event trees, result-
ing in finding multiple copies of the same maxima. In this
paper we present methods derived from our successful ef-
fort and based on the enumeration of event trees.

Figure 5 shows the algorithm for counting unique event
trees, Figure 6 illustrates its operation. One or more tasks
start after each start strut s, shown by a solid vertical line.
Similarly, a non-empty set of already started tasks finish af-
ter each finish strut f, shown by a dashed vertical line.

Figure 6. Execution path of the event tree
enumeration algorithm corresponding to the
event tree in Figure 3.

T x2 a:% x7 x5 z5

Figure 7. Conversion of a “tied” maximization
coordinate system to full dimensions.

Each of the following three maximization methods ex-
plores one event tree at the time. They each maximize on a
unit cube of some dimension, starting from a randomly se-
lected point. The main difference between these methods is
the projection methods they use to internalize the event tree
structure.

Event Tree Maximization (ETM) is a direct full-
dimensional method. For a given event tree we build a cor-
respondence between 2NN task start and finish times and
a (2N + 2M)-dimensional unit cube, where M is the
number of finish struts (refer to the right part of Fig-
ure 7). We use 2M variables x} and z3 to reflect the
ratios, in which start and finish struts break the [¢*, t!] inter-
val. We use the other 2N variables y§ and 3! to show the
proportions occupied by task starts and finishes in the inter-
vals between adjacent struts.

In this coordinate system, the start and finish time of task
1 are expressed as

fo= £ +asi(l—y)
th = t5+a(z]+a7 + 2z + 23yl)
a = (t'—t9)/(zf + i+ 2} +3)

Tied Event Tree Maximization (TETM) addresses the is-
sue of a high number of dimensions in ETM method via
two-stage approach. First, we “tie” starts and finishes of
tasks to the corresponding start struts and omit all finish
struts, thus leaving only M dimensions. If the maximiza-
tion in this smaller space is successful, we “untie” the task
time windows and maximize once again. The last transition
is defined as follows:

yi=yi=1

Expanded Tied Event Tree Maximization (xXTETM) is
used when there is a lot of time slack in the plan, e.g.,
when the agent schedules a week-long plan to be per-
formed some time during a full year. In such hypothet-
ical case TETM is likely to fail, since its “tied” part
always schedules the final reward at tf. XTETM ad-
dresses this by adding two more intervals to the beginning
and the end of the M—dimensional “tied” coordinate sys-
tem.

T; = T; = x5,

Task network A (Figure 1)
ETM TETM
r CE| % CE %
—0.05(/32.44(3.36 || 32.44|39.25
—0.04/31.46|2.60||31.46 | 35.30
—0.03(/30.18|1.72|/30.18 | 32.17
—0.02|28.45(1.33||28.45|27.97
—0.01{/26.03|0.82/26.03 |24.37
0 22.70(0.46 || 22.70|20.00
0.01(/18.29(0.19({18.29|15.83
0.021/13.30(0.11({13.30|12.34
0.03|| 7.84|0.03|| 7.86| 7.87
0.04 2.51] 2.92

Task network B (Figure 2)
ETM TETM xTETM
r CE| %| CE| % || CE| %
—0.05[150.3 53.7|/150.3 | 84.7||144.8 | 11.7
—0.04{149.0(41.4|{149.0|79.4||143.3|11.7
—0.03{146.9(29.1|/146.9|71.5|{141.3|10.0
—0.02|{143.4]18.1|/143.4|61.9|{137.9| 8.2
—0.01{136.0| 9.2|/134.7/49.9|/131.2| 6.1
0 119.2| 4.2|(118.9|37.7||115.6| 4.6
0.01|| 87.9| 1.6|| 87.9|26.4| 81.5| 3.0
0.02]| 43.9| 0.5| 43.9|16.8| 36.4| 1.4
0.03]| 11.2| 0.1 11.2| 5.7 5.1| 0.2

Table 1. Results of maximization.

5. Comprehensive Maximization Results

We tested the three described event tree maximizations
methods for the reducible task network A in Figure 1 and
the irreducible task network B in Figure 2. In each of the ex-
periments we performed 1000 maximizations for each event
tree for values of risk-aversity r from —0.05 to 0.05 with
0.01 increment.

In the two parts of Table 1 we summarize the results
of all runs, except for the XTETM experiment for the net-
work A. In column ‘CE’ we list the maximum attained
value of the certainty equivalent for each particular value
of r for each maximization method. It may be regarded as a
best-effort approximation of the global maximum. Column
‘%’ shows the percentage of maximization attempts that re-
sulted in a local maximum with a strictly positive CE value.

Observe that the original ETM method exhibits a very
poor performance for high risk-aversity values. It also per-
forms better in the case of network B, which was intention-
ally set up to have extra time slack. The only area in which it
performs better than its TETM extension is where there ex-
ist maxima with no clear path to them from “untied” sched-
ules. For example, for r = 0 and » = 0.01 for the task net-

work B it finds higher maximum CE values while converg-
ing to local maxima with much smaller probability.

The overall performance of TETM method is remark-
able, although it looses the percentage of found maxima as
r increases, and does not find some specific maxima that
ETM does. On the other hand, it also produces the results
where TETM falls short, such as in the case of » = 0.04 for
the network A.

The worst performance of all is exhibited by the xTETM
method: it fails to produce any results for the network A.
This behavior, however, is predictable, since none of two se-
tups, especially the first one, has nearly enough time slack.
Nevertheless, we felt it is important to list this method
among others, since it complements TETM in the cases
where there is a substantial time slack in the plan.

6. “Jumping” between Event Trees

Although we observe that direct maximization methods
perform reasonably well for our sample networks, it must
not be overlooked that they do so at a high computational
cost. This cost grows together with the number of event
trees, that is, exponentially in the worst case. There is also
an issue of a relatively poor performance in the cases of high
risk-aversity values — those most interesting for us.

The analysis of the problem domain, briefly summarized
in Section 3, suggests that we don’t need to explore all
possible event trees. However, randomly selecting the trees
from some list is not a reasonable solution: firstly, it might
not be feasible to create this list for large problems; sec-
ondly, there is no reason to believe that the arbitrary sam-
ple of event trees has maxima close to the global, if any.
An alternative way is to exploit the property that allows us
to “jump” between sufficiently similar schedules by chang-
ing their underlying event trees and rearranging their task
start and finish times.

Figure 8 demonstrates five simple rules for changing one
schedule to another similar schedule, while possibly pre-
serving the maximizing properties of the former. Each rule
must obey the precedence relations.

The rules are as follows:

Rule 1: Change starts and finishes of a set of adjacent tasks si-

multaneously:

Rule 1(a): Merge sequential tasks with no precedence rela-
tions between them to form a set of parallel tasks.

Rule 1(b): Swap some start and finish times.

Rule 1(c): Split a set of parallel tasks in two arbitrary non-
empty subsets with randomly chosen shares of
the original set’s time.

Rule 2: Shuffle only start times.
Rule 3: Shuffle only finish times.

A
% N @&
1(c>\1/[F 1(a) 3%3 1(c)% 1(a)

%&)X % @&&

Figure 8. Jumping between schedules for 3
parallel tasks.

Jumping between trees is best coupled with the “tied”
maximizations approach, otherwise it is too complex. Us-
ing these rules eliminates the need for building the com-
plete list of event trees, since they might be applied to any
single tree to obtain neighboring trees. In addition, we can
guide the jumping process by refusing to move to lower CE
values and thus directing it towards higher values.

7. Stochastic Maximization Method

We employ the idea of jumping between event trees
and the continuation methods described earlier to create a
new stochastic maximization method. We further augment
it with a notion of a Simulated Annealing temperature [12]
to encourage its moving towards event trees and local max-
ima with higher CE values.

The following list outlines the resulting algorithm:

1. First, for an arbitrary event tree we find some local
maximum for a low risk-aversity 7oy, and use con-
tinuation techniques to track it to a maximum for the
target Thigh. If the CE value of found maximum is not
strictly positive, we repeat this step.

2. Next, we explore neighboring event trees to find a
higher CE value. To do that we apply our set of 5
jumping rules to randomly select a neighbor. When it
is found, we convert the current maximizing schedule
for 710w to one compatible with the selected event tree.

3. With some probability we repeat the previous step.
This helps us to get out of situation where all the new
neighbors have much smaller local maxima and the an-
nealing temperature 7" is low.

4. We maximize starting from the schedule for)4y, and
use continuation techniques to obtain a maximum for
Thigh- If the CE value of found maximum is not strictly
positive, we return to step 2.

5. If the found maximum CE value is higher than what
we found before, we accept the new schedule and pro-
ceed to step 2. As the annealing temperature 7" drops,

CE i i O seeding maximization .

I — — x— — — 4 < failureto find a maximum | x — —

10k A 0.5 probability threshold A i
X X1 v failure to pass threshold

8l X __successful maximizations |

% ><><. . X

6 i A ﬁv]

4l b "¢ XV sex o X
A

o | X . A XX o X |

X 7

Figure 9. One run of the stochastic method
for the task network in Figure 2, dT" = 0.04,
Tow = —0.05 and Thigh = 0.03.

we refuse to go to lower CE values with increasingly
higher probability.

Figure 9 illustrates one run of the stochastic algorithm
for the task network B and temperature decrement d7' =
0.04, i.e. for a 25 steps long run. We use a square marker
to label the result of maximization in step 1 and a cross
for every subsequent successful maximization in step 4. We
also put a dot at the level of the previous successful maxi-
mization whenever step 4 fails to produce a result. A down-
ward triangle shows CE values that did not pass the anneal-
ing test, in step 5, while upward ones show CE values that
should pass this test with a probability 0.5. Note that in this
particular run the algorithm reached the maximum CE value
found by the direct maximization algorithms (shown by a
horizontal dashed line) almost instantly.

We examined the stochastic algorithm for both sample
task networks for different values of dT°, and summarized
the findings in Figure 10. The z-axis on each plot shows
the number of steps of the algorithm (i.e. dT"~1); the y-axis
shows CE values. Cross markers correspond to found lo-
cal maxima, and the dashed horizontal line shows the max-
imum CE value obtained from the direct maximization ex-
periments.

Based on these test runs we might conclude that the
stochastic maximization algorithm delivers a wide variety
of local maxima, often reaching the best maxima found by
teh more elaborate methods in a matter of a few steps.

8. Related Work

Many multi-agent systems use some form of auction [9]
to allocate resources and arrive at coordinated decisions.
The Contract Net [14] is perhaps the most well known and

o
m

777777777777 X— — % — %X — X— —% — X
4l < % ox ¥ x X % ¥
6l X X g § % X % ; %

x X i X § % g X g
5r X X X X X ¥ X X X
4l X § S § X X X X X ;
L ¥ F ¥ & ¥ X
3,
2»
1r X x x x
O 1 1 1 1 1 1 1 1 1 _1
0 5 10 15 20 25 30 35 40 45 dT
CE
7777777 o — — — — — % — — — — — —% — X
101 X X X X
8' X X X X X X
% X X
6, § § X X X X
X x X & x § X § %
4t X % Ed % g X
% % X % x X b4
2r x & X £ X x
X X X X b K b X

0 1 1 1 1 1 1 1 1 1
0 5 10 15 20 25 30 35 40 45 dT

Figure 10.

widely used protocol for distributed problem solving. Auc-
tions are traditionally used for self-interested agents [19, 5],
but they are being used also for cooperative agents [8, 7].
When auctions are used to distribute tasks [6] or to sched-
ule a resource [18], items are typically auctioned one at a
time. This reduces the opportunity for optimal allocations,
and tends to make the systems reactive but myopic. In our
prior work we have extended winner determination algo-
rithms to include not only costs but also scheduling con-
straints. This enables the agents to combine the advantages
of planning with the convenience of auctions.

Agents in MASCOT [13] coordinate scheduling with the
user. Their major objective is to show policies that optimize
schedules locally. Our objective is to optimize the expected
utility before bids are submitted and schedules are finalized.

In [15] atemporal and temporal goods are considered.
Temporal goods are collected into bundles that represent a
good available over a time interval. This increases signifi-
cantly the computational complexity. A protocol for com-
binatorial auctions for supply chain formation is proposed
in [16]. Complex task networks are allowed, but they do
not include time constraints. A protocol for decentralized
scheduling is proposed in [19]. The study is limited to
scheduling a single resource, while we are interested in mul-
tiple resources. In [18] agents bid for individual time slots
on separate, simultaneous markets. Our agents use combi-
natorial bids.

The complexity of job-shop scheduling [17] is similar
to the complexity our agents face. Our problem is not job-
shop scheduling; we are not scheduling resources the agent
has. Instead we are producing a schedule of tasks that other

agents will carry out. Our objective is to schedule tasks in a
way that optimizes the expected utility of the agent.

Our results show that the specifics of how tasks are
scheduled in a RFQ affect the quality and quantity of
bids [1]. Elicitation of preferences is known to play a sig-
nificant role in reducing the number of bids submitted to
combinatorial auctions [4] and in auction mechanism de-
sign [20]. However, we are not aware of any research that
has studied the dependencies between task schedules, bids,
and costs of accomplishing the tasks.

9. Conclusions

We presented three new methods for maximizing an
agent’s Expected Utility over different schedules of tasks.
The maximization problem is hard mostly because the do-
main is piece-wise continuous, with an exponentially large
number of pieces, and because the maximization algorithms
tend to converge to degenerate maxima.

The methods we presented take advantage of the fact that
the function to be maximized is continuous over a single
event tree. We use domain-specific heuristics to guide the
search. We also create the effective stochastic maximiza-
tion method and illustrate how all the methods work for two
substantially different problem setups.

The methods have been developed in the context of sup-
porting the decisions an agent has to make when generat-
ing a RFQ. This is an important problem, since the ability
of agents to bid for tasks depends on their previous com-
mitments, so different settings of time windows in a RFQ
will end up soliciting different bids with different costs. The
same methods can be used to solve the decision problem an
agent has when submitting bids for tasks that have complex
time constraints and interdependencies.

10. Acknowledgments

Partial support for this research is gratefully acknowl-
edged from the National Science Foundation under award
NSF/IIS-0084202.

References

[1] A. Babanov, J. Collins, and M. Gini. Asking the right ques-
tion: Risk and expectation in multi-agent contracting. Artifi-
cial Intelligence for Engineering Design, Analysis and Man-
ufacturing, 17(4):173-186, September 2003.

[2] A. Babanov, J. Collins, and M. Gini. Scheduling tasks with
precedence constraints to solicit desirable bid combinations.
In Proc. of the Second Int’l Conf. on Autonomous Agents and
Multi-Agent Systems, pages 345-352, Melbourne, Australia,
July 2003.

[3] J. Collins, W. Ketter, and M. Gini. A multi-agent negotiation
testbed for contracting tasks with temporal and precedence

(4]

(5]

(6]

(7]

(8]

(9]

(10]

(1]

(12]

(13]

(14]

[15]

(16]

(17]

(18]

(19]

(20]

constraints. Int’l Journal of Electronic Commerce, 7(1):35—
57, 2002.

W. Conen and T. Sandholm. Preference elicitation in com-
binatorial auctions. In Proc. of the First Int’l Conf. on Au-
tonomous Agents and Multi-Agent Systems, volume 1, pages
168-169, Bologna, Italy, July 2002.

P. S. Dutta, S. Sen, and R. Mukherjee. Scheduling to be com-
petitive in supply chains. In IJCAI workshop on E-Business
and the Intelligent Web, August 2001.

B. P. Gerkey and M. J. Matari¢. Sold!: Auction methods
for multi-robot coordination. /EEE Trans. Robotics and Au-
tomation, 18(5):758-786, October 2002.

L. Hunsberger. Generating bids for group-related actions in
the context of prior commitments. In Intelligent Agents VIII,
volume 2333 of LNAI Springer-Verlag, 2002.

L. Hunsberger and B. J. Grosz. A combinatorial auction for
collaborative planning. In Proc. of 4th Int’l Conf on Multi-
Agent Systems, pages 151-158, Boston, MA, 2000. IEEE
Computer Society Press.

V. Krishna. Auction Theory. Academic Press, London, UK,
2002.

A. Mas-Colell, M. D. Whinston, and J. R. Green. Microeco-
nomic Theory. Oxford University Press, January 1995.

J. W. Pratt. Risk aversion in the small and in the large.
Econometrica, 32:122-136, 1964.

C. R. Reeves. Modern Heuristic Techniques for Combinato-
rial Problems. John Wiley & Sons, New York, NY, 1993.
N. M. Sadeh, D. W. Hildum, D. Kjenstad, and A. Tseng.
MASCOT: an agent-based architecture for coordinated
mixed-initiative supply chain planning and scheduling. In
Workshop on Agent-Based Decision Support in Managing
the Internet-Enabled Supply-Chain, at Agents ’99, pages
133-138, 1999.

R. G. Smith. The contract net protocol: High level commu-
nication and control in a distributed problem solver. IEEE
Trans. Computers, 29(12):1104-1113, December 1980.

W. Walsh and M. Wellman. A market protocol for decentral-
ized task allocation and scheduling with hierarchical depen-
dencies. In Proc. of 3th Int’l Conf on Multi-Agent Systems,
1998.

W. E. Walsh, M. Wellman, and F. Ygge. Combinatorial auc-
tions for supply chain formation. In Proc. of ACM Conf
on Electronic Commerce (EC’00), pages 260-269, October
2000.

J. P. Watson, J. C. Beck, A. Howe, and L. D. Whitley. Prob-
lem difficulty for tabu search in job-shop scheduling. Artifi-
cial Intelligence, pages 189-217, 2002.

M. Wellman, J. MacKie-Mason, D. Reeves, and S. Swami-
nathan. Exploring bidding strategies for market-based
scheduling. In Proc. of Fourth ACM Conf on Electronic
Commerce, 2003.

M. P. Wellman, W. E. Walsh, P. R. Wurman, and J. K.
MacKie-Mason. Auction protocols for decentralized
scheduling. Games and Economic Behavior, 35:271-303,
2001.

P. R. Wurman, M. P. Wellman, and W. E. Walsh. Specify-
ing rules for electronic auctions. Al Magazine, 23(3):15-24,
2002.

