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ABSTRACT

We are interested in multi-agent contracting, in which cus-
tomers must solicit the resources and capabilities of other,
self-interested agents in order to accomplish their goals. Goals
may involve the execution of multi-step plans, in which dif-
ferent steps are contracted out to different suppliers. We
have developed a testbed that can generate sets of plans with
known statistical attributes, formulate and submit requests
for quotations, generate bids with well-defined statistics, and
evaluate those bids according to a number of criteria.

1. INTRODUCTION

Over the past decade, manufacturing logistics has become
significantly more complex. Many processes are outsourced
to outside contractors, making supply chains longer and
more convoluted. The increased complexity is often com-
pounded by accelerated production schedules which demand
tight integration of all processes. Thus, the field is ripe for
the introduction of systems that automate logistics planning
among multiple entities such as manufacturers, part suppli-
ers, shippers, and specialized subcontractors.

We are interested in understanding how a community of
heterogeneous, self-interested agents, can make commitments
and carry out plans that require multiple tasks and co-
ordination among multiple agents. We assume that some
agents (customer agents) have goals that they themselves
cannot satisfy, either because they lack the abilities, or the
resources, to carry out at least some of the operations. There
are also other agents (supplier agents) who have resources to
offer, and who are willing to make those resources available
to other agents in a way that maximizes their value to the
agents that control them.

To help automate logistics planning, we propose a com-
bination of an auction-based negotiation process along with
a generalized market architecture. We have implemented a
prototype testbed, called MAGNET (Multi AGent NEgoti-
ation Testbed).
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Figure 1: The MAGNET architecture

2. AGENTSAND THEIR ENVIRONMENT

Agents may fulfill one or both of two roles with respect to
the MAGNET architecture, as shown in Figure 1. Customer
agents pursue their goals by formulating and presenting Re-
quests for Quotations (RFQs) to Supplier agents through a
market infrastructure. The RFQ specifies a task network
that includes task descriptions, a precedence network, and
possibly other time constraints. Customer agents attempt
to satisfy their goals for the least net cost, where cost fac-
tors can include not only bid prices, but also goal completion
time and risk factors. More precisely, these agents are at-
tempting to maximize the utility function of some user, as
discussed in [1]. Supplier agents attempt to maximize the
value of their resources by submitting bids in response to
those RFQs, specifying what tasks they are willing to un-
dertake, when they are available to perform those tasks, and
at what price.

3. A CUSTOMER AGENT

We now focus on the structure and responsibilities of a
Customer agent in the MAGNET environment. As indi-
cated in Figure 1, the basic operations are planning, bidding,
and plan execution. We have implemented a simple Plan-
ner that generates random plans with well-defined statistics,
and we have a Bid Manager with a fairly rich implementa-
tion of tools for composing RFQs and selecting bids. The
Execution Manager is not yet implemented.

3.1 Planner

The Planner’s task is to produce executable plans, which
are represented as task networks with temporal constraints.
The planner in the testbed generates tasks by selecting ran-
domly from a library of task types, and then creates random
precedence relations among them. It can also accept pre-



defined plans. We expect that in many domains, plans will
be chosen from a library or defined by a human user rather
than being generated by a general-purpose planner.

The definitions of tasks in the Domain Model are shared
among the agents. This model includes not only the task
definitions, but statistics (collected by the market) about
each task type. These statistics include expected duration
and variability, expected price and variability, and resource
availability data.

3.2 Bid Manager

The Bid Manager is responsible for ensuring that resources
are assigned to each of the tasks of a plan, that the assign-
ments taken together form a feasible schedule, and that the
cost of executing the plan is minimized. This cost must also
be less than the value of the goal at the time the goal is
reached.

The Bid Manager must construct and issue a RFQ, eval-
uate bids, and accept bids in order to carry out its responsi-
bilities. Initially, its primary responsibility is to decide how
much time to allocate to negotiation and how much to plan
execution. It also has to decide which markets to use, when
to consult catalog and timetable databases, and which alter-
natives to pursue and in what order. For example, it may
decide to solicit bids on a high-value but risky approach,
and if that fails to fall back on a lower-value but safer al-
ternative. It could also decide to defer taking bids on later
tasks until earlier tasks were underway or even completed.

Before bids can be solicited in a market, an RFQ must
be composed. The RFQ is a structure that contains tasks
and precedence relations, along with a set of scheduling con-
straints. One role of the Bid Manager is to determine those
scheduling constraints. Its goal is to produce an RFQ that
will solicit the most advantageous set of bids possible, by
finding a balance between giving maximum flexibility to sup-
pliers, ensuring that the resulting bids will combine feasibly,
and ensuring that the job will be completed by the deadline.

After bids have been received, the Bid Manager has to
evaluate them in an attempt to find an optimal or near-
optimal mapping of bids to tasks, respecting temporal con-
straints, and then award them. The evaluation must be
completed within the period of time allocated to negotia-
tion.

Several approaches to bid evaluation for combinatorial
auctions have been proposed [5, 3, 6], but they cannot be
easily extended to deal with temporal constraints.

We have implemented two evaluators. One is based on
Integer Programming, and the other is a highly modular
Simulated Annealing (SA) search engine [2]. The Integer
Programming (IP) solver operates in two phases. The first
phase generates basic bid-compatibility constraints, and then
walks all paths of length 2 or greater in the precedence net-
work, across all compatible bid combinations, to discover
feasibility constraints. These are then packaged up and sent
off to an external IP solver. The core of the simulated-
annealing engine is similar to the one described in [4]. Start-
ing with a plan and a set of bids, we generate and evalu-
ate bid mappings until one of several stopping conditions
holds. These include failure to find improvement for a con-
figurable number of iterations, expiration of the deliberation
time limit, and lack of mappings that have any untried ex-
pansions.

Our experiments show a significant variation in the solu-

tion time for the IP method. We are exploring how to com-
bine the IP optimizer with the simulated annealing engine
to produce any-time behavior. This is important because
MAGNET agents have a strictly limited amount of time to
make bid-award decisions.

4. SUPPLIER AGENTS

Since our primary interest has been in the workings of
the Customer agent, our Supplier agents are currently fairly
simple-minded entities. They receive RFQs and respond by
submitting bids. They do not maintain resource schedules,
and they have no persistent identity.

We have implemented different generators for bids. Ex-
amples include one that always bids on certain task types if
they are present in the RFQ, one that generates a random
set of bids, and one that attempts to generate a set that
covers all tasks in the RFQ.

Each bid contains one or more individual tasks. For each
task the bid specifies its expected duration, early-start and
late-finish time. Duration and cost are selected from random
distributions specified in the task-type description. Early-
start and late-finish times are also randomly generated from
the resource-availability data in the task-type description.

5. CONCLUSIONS

The MAGNET testbed is a prototype implementation of
a Customer agent, along with simulated Supplier agents.
It is highly configurable and extensible, and has been used
for several statistical studies aimed at understanding the
decision processes of a Customer agent.
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