
Bid evaluation for coordinated tasks: an Integer Programming

formulation

John Collins and Maria Gini∗

Department of Computer Science and Engineering

University of Minnesota

{jcollins,gini}@cs.umn.edu

Abstract

We extend the IP models proposed by Nisan and Andersson for winner determination in combinatorial

auctions, to the problem of evaluating bids for coordinated task sets. This requires relaxing the free

disposal assumption, and encoding temporal constraints in the model. We present a basic model, along

with an improved model that dramatically reduces the number of rows by preprocessing the temporal

constraints into compatibility constraints. Experimental results show how the models perform and scale.

1 Introduction.

Business-to-business e-commerce is expanding rapidly, letting companies both broaden their customer base
and increase their pool of potential suppliers. Negotiating supplier contracts for the multiple components that
often make up a single product is complicated because time dependencies introduce a significant scheduling
risk. Current e-commerce systems typically rely on either fixed-price catalogues or auctions [6]. Such systems
focus only on cost, which is just one factor in the complicated buyer-supplier relationship.

The University of Minnesota MAGNET (Multi-Agent Negotiation testbed) [2] system is designed to
support the negotiation of contracts for coordinated tasks among a population of independent and self-
interested agents. Dealing with coordinated tasks adds some major complexities to the auction model of
agent interaction. First, because tasks have a temporal duration and precedence constraints, any bid selection
algorithm must insure the temporal feasibility of the bids accepted. Second, because each of the tasks in
the set of coordinated tasks is necessary to achieve the overall goal, any bid selection algorithm must insure
coverage of all of the tasks. Third, delays and failures that might occur during the execution of the contracted
tasks, can have devastating effects on the accomplishment of the overall goal. This introduces the need to
assess scheduling risk and to account for risk in the bid selection algorithm.

Several papers have been published recently that deal with linear and integer programming formulations
of the allocation problem in combinatorial auctions [1, 7]. This leads the the obvious question: can the
MAGNET bid-evaluation problem be formulated as a linear or integer programming problem. If so, there
are well-known and reasonably efficient evaluation procedures for these problems, although in general the
integer programming problem is NP-complete.

2 Example

Suppose we have a job to do that involves performance of a set of coordinated tasks within a limited
time frame. Also suppose that we wish to minimize the cost for completion of this job. Examples might
include construction of a building or a bridge, evacuation of an island [8], or establishment of a multi-link
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communication channel. The resources needed to perform those tasks must be acquired from self-interested
suppliers, who are attempting to maximize the value of the resources under their control. It is the job of
a MAGNET Customer agent to use an auction process to obtain a set of commitments for those resources,
that can be composed into a temporally feasible plan, at a minimum price.

Figure 1 shows an example task network. It is a directed acyclic graph, with arcs representing precedence
relations. The numbers in parentheses are the expected durations of each task. We expect that this task
duration data, as well as statistics on duration variability, resource availability, and supplier reliability, will
be collected and made available from the MAGNET market infrastructure [2].
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Figure 1: Example task network

Suppliers submit bids on sets of tasks based on their own resource availabilies and costs, and based on
a Request for Quotes (RFQ) submitted by a potential customer. A bid includes a set of tasks and a price,
along with timing data including duration and the earliest and latest times the task(s) may be started. When
composing the RFQ for a plan, the customer must give suppliers some guidance about when the work must
be done. This is done by specifying a time window for each task that gives the earliest start time and latest
finish time. In generating this schedule, the customer has two conflicting goals:

1. Ensure that the bids received can be composed into a feasible plan. This can be done by specifying
time windows that do not overlap.

2. Specify relatively wide, and possibly overlapping time windows, in hopes of attracting more bids and
lower prices. The risk in doing this is that many bid combinations will not compose feasibly because
their task time windows are in conflict.

If we take the first approach, then the bid-evaluation process reduces to a variation on the combinatorial-
auction winner-determination process [11], without the free-disposal assumption1. The second approach
leads to a much more difficult and interesting bid-evaluation problem, which is the subject of this paper.

The plan in Figure 1 has a makespan of 37 time units. This is the longest path through the graph. If we
have a deadline for plan completion of 40 units, then we have an overall slack of 3 units, or about 8%.

Table 1 shows some bids that might be received for this plan. Several observations are apparent:

• Each bid may specify a “bundle” of tasks. A single price is given for the bundle.

• In this example and in the remainder of this paper, we assume that bids give early start, late start,
and duration data for each task individually. This assumption can be relaxed.

• Bids b1 and b3 cannot both be accepted, because they both specify task s5. Each task must be allocated
to exactly one bid.

• Bids b1 and b2 cannot both be accepted, because the precedence relation s5 ≺ s6 would be violated.
This because the earliest time task s5 could be completed under bid b1 is 35, while the latest time task
s6 could start under bid b2 is 33.

1The free-disposal assumption states that items can remain unallocated without penalty.
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• Bids b1 and b4 cannot both be accepted. This is more subtle. The precedence relations s1 ≺ s4 and
s4 ≺ s5 can be satisfied individually. However, when we attempt to combine the two bids, we see that,
in order to satisfy s1 ≺ s4, the early finish time of task s4 is pushed back to 23.5, and s4 ≺ s5 is
violated.

Table 1: Example Bids

Bid Task Price Early Start Late Start Duration
b1 s1 200 1.5 3.0 11.0

s3 12.5 14.0 8.5
s5 22.0 23.0 13.0

b2 s2 290 10.0 16.0 18.0
s6 28.0 33.0 6.0

b3 s4 160 9.0 13.0 6.0
s5 15.0 19.0 14.0

b4 s4 20 10.0 15.0 11.0

We’ll use this example to examine details of our bid-evaluation process.

3 IP formulations

We start by introducing some notation. A plan consists of a set S of tasks sj, j = 1..m. Each task sj has a
precedence set Pj = {sj′ |sj′ ≺ sj}, the set of tasks sj′ that must be completed before sj is started. At the
conclusion of some bidding process, we have a set B of bids bi, i = 1..n. Each bid bi specifies a set of tasks
Si and a price pi. For each task sj, a bid bi that includes the task (sj ∈ Si) may specify an early start time
ei

j , a late start time f i
j , and a duration di

j .
We have also defined a risk factor ri, associated with each bid, that is based on static factors, such as

the reputation of the bidder. The derivation of ri is outside the scope of this discussion, but we include it
for completeness.

3.1 A straightforward model

First, we present a “direct” model, in which the coverage and feasibility constraints are directly represented.
We associate a 0/1 variable xi with each bid bi, with the sense that in a solution where xi = 1, bi is accepted.
No pre-processing is required other than composing the constraint rows.

If we include only static risk factors (those that are determined strictly by the set of bids chosen, and
not by scheduling considerations), the formulation of the basic bid-evaluation problem is:

Minimize:
n∑

i=1

(pi + ri)xi

Subject to:

• Bid selection – each bid is either selected or not selected. These are the integer variables that make
this an integer programming problem.

xi ∈ {0, 1}
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• Coverage – each task must be included exactly once.

∀j = 1..m
∑

i|sj∈Si

xi = 1

Note that under the free disposal assumption, each task would be included at most once, rather than
exactly once.

• Local feasibility – each task must be able to start after the earliest possible completion time of each of
its predecessors. This constraint ignores global feasibility. In other words, here we are looking only at
the start times of a particular task and its immediate predecessors.

∀j = 1..m, ∀i|sj ∈ Si, ∀i′|sj′ ∈ (Si′ ∩ Pj),

xif
i
j ≥ xi′ (e

i′

j′ + di′

j′ ) − M(1 − xi)

where M is a “large” number2, and the last term M(1− xi) is used to make the constraint satisfied in
the case where xi = 0.

In our example, the precedence relations between b1 and b4 would be expressed as

x4(15.0) ≥ x1(1.5 + 11.0) − M(1 − x4)

x1(23.0) ≥ x4(10.0 + 11.0)− M(1 − x1)

• Global feasibility – each task must be able to start after the earliest possible completion time of each
of its predecessors, where the predecessors may in turn be constrained not by their bids, but by their
respective predecessors.

∀j = 1..m, ∀i|sj ∈ Si, ∀i′|sj′ ∈ (Si′ ∩ Pj), ∀i′′|sj′′ ∈ (Si′′ ∩ Pj′),

xif
i
j ≥ xi′d

i′

j′ + xi′′ (e
i′′

j′′ + di′′

j′′ ) − M(1 − xi)

∀j = 1..m, ∀i|sj ∈ Si, ∀i′|sj′ ∈ (Si′ ∩ Pj),

∀i′′|sj′′ ∈ (Si′′ ∩ Pj′), ∀i′′′|sj′′′ ∈ (Si′′′ ∩ Pj′′ ),

xif
i
j ≥ xi′d

i′

j′ + xi′′d
i′′

j′′ + xi′′′ (e
i′′′

j′′′ + di′′′

j′′′ ) − M(1 − xi)

...

In our example, the infeasibility between b1 and b4 is captured by the constraint

x1(23.0) ≥ x4(11.0) + x1(1.5 + 11.0) − M(1 − x1)

The number of constraints generated by these formulas is highly variable, depending strongly on the depth
of the plan (the length of the longest path in the precedence network), and on the detailed composition of
the bids.

3.2 Collapsing the feasibility constraints

The formulation given in Section 3.1 is correct, but it can be dramatically improved, based on several
observations. The first is that we can pre-process the coverage constraints to reduce the number of bids. If
there is any task sj for which only one bid bi has been received (we’ll call bid bi a “singleton” bid for task
sj), bi must be part of any complete solution. Bids bk that conflict with bi can then be discarded. In more
formal terms,

∀j|
∑

i|sj∈Si

1 = 1, xi = 1, ∀k|Si ∩ Sk 6= ∅, xk = 0

2our implementation uses a value of approximately 1012
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This test is repeated until no further singleton bids are detected.
Next, we make the following observations regarding the feasibility constraints:

1. We have generated feasibility constraints between bids that cannot possibly be part of the same solution,
because they contain overlapping task sets. The coverage constraints will ensure that only one bid will
be chosen to cover each task. We can discard such constraints immediately. In our example, this means
that we need not generate or evaluate any feasibility constraints that include both b1 and b3.

2. The feasibility constraints can be greatly simplified by doing the arithemetic during preprocessing, and
including only those constraints that can have an impact on the outcome. This way, we eliminate
all the feasibility constraints shown in Section 3.1, and replace them with a much smaller number of
simple compatibility constraints. In other words, if we start with a constraint of the form

xif
i
j ≥ xi′(e

i′

j′ + di′

j′ ) − M(1 − xi),

we compute f i
j − (ei′

j′ + di′

j′ ). Just in case the result is negative, we include a constraint of the form

xi + xi′ ≤ 1

which will prevent both xi and xi′ from being part of the same solution. This simplification can be
similarly applied to the global feasibility constraints. In general, such constraints tell us that for some
combination of n bids, at most n − 1 of them may be part of a solution.

In our example, we can observe the infeasibility between b1 and b4 during pre-processing, and rather
than generate the formula given above in Section 3.1, we replace it with

x1 + x4 ≤ 1

3. If we have successive tasks in the same bid, we can filter the bids themselves for internal feasibility
prior to evaluation. After the previous step, any constraints of the form xi + xi ≤ 1 represent bids xi

that can be discarded.

3.3 Minimizing completion time

If we want to minimize the time to complete the plan, we must develop an expression for the completion
time. To begin with, we define t0 as the (fixed) start time of the plan. Then we need to determine the latest
time at which some task will be completed. We needn’t consider all tasks, just the “leaf tasks,” those that
have no successors. If we ignore precedence constraints, the earliest possible completion time tc for the plan
as a whole is the maximum early finish time of any leaf task for a given bid assignment. Since in any valid
bid assignment, only one bid is chosen for any given task, we can express this as

tc = max
j|∀k,sj 6∈Pk

∑

i|sj∈Si

xi(e
i
j + di

j)

where a task sj that has no successors is one that is in the predecessor set of no other tasks.
Unfortunately, it doesn’t work to ignore precedence constraints. There may be a task in the precedence

set of any given leaf task sj whose early finish time in a given bid assignment will prevent sj from starting
at its early start time. To avoid this problem, while taking advantage of the precedence constraints we’ve
already developed, we do two things. First, we must have a single task whose completion marks the end
of the plan; to ensure that this is the case, we create a dummy task sc, with 0 duration. We then define
tc as the start time of task sc. We don’t define a bid for this task, because we want to use its start time
as a variable. We also define the plan start time t0. Then we have to add a completion-time term to the
objective function, which now reads:

5



Minimize:

Wc

n∑

i=1

(pi + ri)xi + Wt(tc − t0)

where Wc is the relative weight given to cost, Wt is the relative weight given to completion time, and (tc− t0)
is the total makespan of the plan.

Next, we add an additional set of feasibility constraints, as given above in Section 3.1, to constrain the
dummy task to start later than the completion times of all the leaf tasks. This set will include the local and
global feasibility constraints, expanded recursively to the root tasks, substituting tc for xif

i
j . Since tc is a

variable that appears in the objective function, its final value with be the earliest time that is greater than
the maximum early completion time over all leaf tasks for any given bid assignment.

This approach does not work with the simplified form of the feasibility constraints as given in Section 3.2.
There, we have discarded the temporal information in preprocessing, and are left with simple compatibility
constraints. This deprives the IP solver of the information necessary to operate on completion time. An
alternative approach in this case would be to make completion time be a constraint, rather than a factor
in the objective function. This would typically require multiple passes, reducing the completion time until
either no solution exists, or until the solution price becomes unacceptable.

4 Experimental results

To illustrate the effectiveness of our formulation, we have implemented both the original formulation given
in Section 3.1, and the pre-processed formulation given in Section 3.2. Results show that our IP formulation
is practical for moderate-sized problems, though it scales exponentially and the time required to find the
optimum solution exhibits a very high variability. Experiments were run using dual-processor 850 MHz
Linux boxes. Timings are given in wall-clock time. The MAGNET system is written in Java, and the IP
solver is lp solve, available from ftp://ftp.ics.ele.tue.nl/pub/lp solve/.

Each problem set consists of 200 problems, with randomly-generated plans and randomly-generated bids.
Our problem generator has a large number of parameters; we kept all of them constant except for the
task-count and bid-count values. Since our goal is to evaluate bids in a time-limited multi-agent interaction
situation, we are primarily interested in scalability and predictability. Secondarily, we are interested in
discovering measurable problem characteristics that the agent can use to tune its evaluation process “on the
fly.”

The process for generating problems operates as follows:

1. Generate plan: The desired number of tasks is generated, and random precedence relations are created
between them. Tasks are randomly selected from among three “task types” that specify different values
of expected duration, duration variability, and expected resource availability.

2. Compose RFQ : An RFQ is generated by setting time windows for the tasks in the plan, and specifying
the timeline for the bidding process. Time windows are set by determining the makespan of the
plan (the longest path through the precedence network) and multiplying it by a “slack” factor of 1.2,
then “relaxing” the time windows for individual tasks to allow some overlap. The final result is that
individual tasks are given time windows of at least 125% of their expected values (tasks not on the
critical path will have longer time windows). In the test environment we ignore the bidding timeline.

3. Generate Bids : A specified number of attempts are made to generate bids against the RFQ. Each bid
is generated by selecting a task at random from the plan, using the task-type parameters to generate
a supplier time window for that task, and testing this time window against the time window specified
in the RFQ for that task. If the supplier’s time window is contained within the RFQ time window,
we call it a “valid task spec” and add the task to the bid. If a valid task spec was generated, then
with some probability, each predecessor and successor link from that task is followed to attempt to

6



add additional tasks to the bid, and so on recursively. The resulting bids specify “contiguous” sets of
tasks, and are guaranteed to be internally feasible. Finally, a cost is determined for the overall bid.
Because valid task specs are not always achieved, some attempts to generate bids will fail altogether.

The first experiment compares the performance of the original IP formulation to the revised formulation.
We were only able to run the original formulation on the smallest problems (5 tasks, up to 20 bids) because
some problems were generating more than 105 rows and taking inordinate amounts of time to solve (we
stopped one after 13 hours). Table 2 shows the results of this experiment. All entries are averaged across
200 problems. Key features to observe are the relative problem sizes (number of rows) and the extreme
variability (given as σ(time)) of the original formulation. For the revised formulation, the reported time is
the sum of preprocessing time and IP solver time. The time required for preprocessing is generally between
2 and 20 times the run time of the IP solver itself, but this appears to be time well spent. Our experience
attempting to solve larger problems with the original formulation shows that the advantage of preprocessing
grows dramatically as problem size increases.

Table 2: Comparing IP formulations

Original IP Revised IP
Task Bid Time Time
Count Count Rows (msec) σ(time) Rows (msec) σ(time)

5 11.4 487 195 1001 16.3 71.3 144
5 13.5 869 233 937 18.6 71.0 150
5 15.0 1265 753 5125 20.3 68.8 125
5 17.0 2271 3150 16256 22.7 95.8 279

The second series demonstrates scalability of the search process as the size of the plan varies, with a
(nearly) constant ratio of bids to tasks (the ratio varies somewhat due to the random nature of the bid-
generation process). Table 3 shows problem characteristics for this set. In the table, the “Solved” column
gives the number of problems solved out of 200 (not all 200 problems were solvable), “PP Time” gives the
preprocessor time, “IP Time” gives the time spent in the IP solver itself, and σ(time) gives the standard
deviation of the sum of the “PP Time” and “IP Time” columns.

Table 3: Task size experiment: Revised IP

Task Bid Bid PP Time IP Time
Count Count Size Solved Rows (msec) (msec) σ(time)

5 13.5 1.74 180 18.6 8.4 62.5 150
10 28.7 2.20 175 48.2 84.8 64.7 167
15 45.2 2.67 162 115 390 356 630
20 61.2 2.98 162 330 1711 288 2519
25 77.5 3.40 149 1030 6919 2273 24815
30 93.6 3.82 147 2296 19515 4150 71031

5 Related work

The determination of winners of combinatorial auctions [5] is known to be hard. Many algorithms have been
proposed to produce good or optimal allocations. Dynamic programming [9] produces optimal allocations,
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but works well only for small sets of bids, and imposes significant restrictions on the class of bids. Nisan [7]
formalizes several bidding languages and compares their expressive power. He analyzes different classes of
auctions, and proposes an approach based on Linear Programming for bid allocation. Shoham [4] produces
optimal allocations for OR-bids with dummy items by cleverly pruning the search space. Sandholm [10, 12]
uses an anytime algorithm to produce optimal allocations for a more general class of bids, which includes XOR
and OR-XOR bids. Andersson [1] proposes integer programming for winner determination in combinatorial
auctions. The major difference is that in the cases studied for combinatorial auctions, bid allocation is
determined solely by cost. Our setting is more general. Our agents have to cover all the tasks, ensure
feasibility of the bids they accept, and reduce scheduling risk.

Walsh has proposed using combinatorial auction mechanisms for supply-chain formation [13] and for
decentralized scheduling [14]. Neither of these proposals requires the allocation solver to deal with temporal
feasibility, which is the principal problem dealt with in this work.

6 Conclusion and future work

We have shown that Integer Programming can be applied to the problem of bid evalulation in a combinatorial
auction situation that includes temporal constraints among items, and lacks the free-disposal option. The
formulation we present typically requires an amount of pre-processing that is significantly greater than
the time required by the IP solver itself. A significant weakness of the IP approach is its high degree of
variability. For an agent that must perform on a fixed time schedule, this may not be acceptable. We suggest
that running a stochastic search in parallel with the IP approach may alleviate this drawback.

Future work in this area will include learning how to effectively combine IP with the Simulated Annealing
algorithm we have developed [3] in a real-time agent negotiation environment, using measurable problem
characteristics to guide the process. We would also like to understand how to incorporate risk factors that
depend on the distribution of slack in the schedule, and how to optimize completion time without significantly
increasing the complexity of the problem.
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