
AN INTEGER PROGRAMMING FORMULATION

OF THE BID EVALUATION PROBLEM FOR

COORDINATED TASKS

JOHN COLLINS AND MARIA GINI∗

Abstract. We extend the IP models proposed by Nisan and Andersson for winner
determination in combinatorial auctions, to the problem of evaluating bids for coor-
dinated task sets. This requires relaxing the free disposal assumption, and encoding
temporal constraints in the model. We present a basic model, along with an improved
model that dramatically reduces the number of rows by preprocessing the temporal
constraints into compatibility constraints. Experimental results show how the models
perform and scale, and how they compare with a stochastic solver based on Simulated
Annealing. On average, the IP approach finds optimum solutions significantly faster
than Simulated Annealing, but with an extreme level of variability that may make it
impractical in time-constrained agent negotiation scenarios.

Key words. automated negotiation, multiattribute combinatorial auctions, Integer
Programming.

AMS(MOS) subject classifications. 90C10, 68T20

1. Introduction. Business-to-business e-commerce is expanding
rapidly, letting companies both broaden their customer base and increase
their pool of potential suppliers. Negotiating supplier contracts for the
multiple components that often make up a single product is complicated
because time dependencies introduce a significant scheduling risk. Cur-
rent e-commerce systems typically rely on either fixed-price catalogues or
auctions [9], and they often don’t deal effectively with the time dimension.

The University of Minnesota MAGNET (Multi-Agent Negotiation
testbed) [3] system is designed to support the negotiation of contracts for
coordinated tasks among a population of independent and self-interested
agents. Dealing with coordinated tasks adds some major complexities to
the auction model of agent interaction. First, because tasks have a tempo-
ral duration and precedence constraints, any bid selection algorithm must
insure the temporal feasibility of the bids accepted. Second, because each
of the tasks in the set of coordinated tasks is necessary to achieve the over-
all goal, any bid selection algorithm must insure complete coverage of the
tasks. Third, delays and failures that might occur during the execution of
the contracted tasks can threaten the accomplishment of the overall goal.
This introduces the need to assess scheduling risk and to account for risk
in the bid selection algorithm.

Several papers have been published recently that deal with linear and
integer programming formulations of the allocation problem in combinato-

∗Department of Computer Science and Engineering, University of Minnesota, Min-
neapolis, Minnesota. {jcollins,gini}@cs.umn.edu. Work supported in part by the
National Science Foundation, awards NSF/IIS-0084202 and NSF/EIA-9986042.

1

2 JOHN COLLINS AND MARIA GINI

rial auctions [1, 10]. This leads the the obvious question: can the MAGNET
bid-evaluation problem be formulated as a linear or integer programming
problem. If so, there are well-known and reasonably efficient evaluation pro-
cedures for these problems, although in general the integer programming
problem is NP-complete. We show that an integer programming approach
appears to be a feasible approach to the MAGNET bid-evaluation prob-
lem, and we evaluate its performance and suitability for a time-constrained
agent reasoning process.

In the next section, we give a simple example that will help understand
the details of our approach. Section 3 presents a straightforward IP model
of the MAGNET bid-evaluation problem, and follows up with an improved
version that uses preprocessing to generate a more compact representa-
tion. In Section 4, we present experimental results comparing the two IP
formulations and a heuristic search method based on Simulated Annealing,
and we show why the Simulated Annealing approach might be valuable,
even though its average performance is much worse than the improved IP
formulation. Finally, Section 5 relates this work to earlier work in solving
combinatorial auction problems, and Section 6 presents our conclusions and
suggestions for further work in this area.

2. Example. Suppose we have a job to do that involves performance
of a set of coordinated tasks within a limited time frame, and we wish
to minimize the cost of the job. Examples might include constructing a
building or a bridge, evacuating an island [12], shipping a large piece of
industrial equipment overseas, or establishing a multi-link communication
channel. The resources needed to perform those tasks must be acquired
from self-interested suppliers, who are attempting to maximize the value
of the resources under their control. It is the job of a MAGNET Cus-
tomer agent to use an auction process to obtain a set of commitments for
those resources, that can be composed into a temporally feasible plan, at
a minimum price.

Figure 1 shows an example task network. It is a directed acyclic graph,
with arcs representing precedence relations. (In this paper, the notion of
“precedence” means that if task A precedes task B, written as A ≺ B,
then task A must be completed before task B can start. No delay is im-
plied between the end of task A and the start of task B.) The numbers in
parentheses are the expected durations of each task. We expect task dura-
tion data, as well as data on duration variability, resource availability, and
supplier reliability, to be collected and made available from the MAGNET
market infrastructure [3].

Suppliers submit bids on sets of tasks based on their own resource
availabilities and costs, and based on a Request for Quotes (RFQ) submit-
ted by a potential customer. A bid includes a set of tasks and a price, along
with timing data, including duration and the earliest and latest times the
task(s) may be started. When composing the RFQ for a plan, the cus-

BID EVALUATION FOR COORDINATED TASKS 3

s1(10) �������*

-
@

@
@R

s2(16) HHHHHHHjs3(10) -

s4(8) �
�

��
s5(12) - s6(5)

Fig. 1. Example task network

tomer must give suppliers some guidance about when the work must be
done. This is done by specifying a time window for each task that gives
the earliest start time and latest finish time. In generating this schedule,
the customer has two conflicting goals:

1. Ensure that the bids received can be composed into a feasible plan.
This can be done by specifying time windows that do not overlap.

2. Specify relatively wide, and possibly overlapping time windows,
in hopes of attracting more bids and lower prices. The risk in
doing this is that many bid combinations will not compose feasibly
because their task time windows will be in conflict.

If we take the first approach, then the bid-evaluation process reduces to a
variation on the combinatorial-auction winner-determination problem [16],
without the free-disposal assumption 1. The second approach leads to a
much more difficult and interesting bid-evaluation problem, which is the
subject of this paper.

The plan in Figure 1 has a makespan of 37 time units. This is the
longest path through the graph. If we have a deadline for plan completion
of 40 units, then we have an overall slack of 3 units, or about 8%.

Table 1

Example Bids

Bid Task Price Early Start Late Start Duration
b1 s1 200 1.5 3.0 11.0

s3 12.5 14.0 8.5
s5 22.0 23.0 13.0

b2 s2 290 10.0 16.0 18.0
s6 28.0 33.0 6.0

b3 s4 160 9.0 13.0 6.0
s5 15.0 19.0 14.0

b4 s4 20 10.0 15.0 11.0

Table 1 shows some bids that might be received for this plan. Several

1The free-disposal assumption states that items can remain unallocated without
penalty.

4 JOHN COLLINS AND MARIA GINI

observations are apparent:
• Each bid may specify a “bundle” of tasks. A single price is given

for the bundle.
• In this example and in the remainder of this paper, we assume

that bids give early start, late start, and duration data for each
task individually. This assumption can be relaxed.

• Bids b1 and b3 cannot both be accepted, because they both specify
task s5. Each task must be allocated to exactly one bid.

• Bids b1 and b2 cannot both be accepted, because the precedence
relation s5 ≺ s6 would be violated. This because the earliest time
task s5 could be completed under bid b1 is 35, while the latest time
task s6 could start under bid b2 is 33.

• Bids b1 and b4 cannot both be accepted. This is more subtle.
The precedence relations s1 ≺ s4 and s4 ≺ s5 can be satisfied
individually. However, when we attempt to combine the two bids,
we see that, in order to satisfy s1 ≺ s4, the early finish time of
task s4 is pushed back to 23.5, and s4 ≺ s5 is violated.

We’ll use this example to examine details of our bid-evaluation process.

3. IP formulations. We start by introducing some notation. A plan
consists of a set S of tasks sj , j = 1..m. Each task sj has a precedence set
Pj = {sj′ |sj′ ≺ sj}, the set of tasks sj′ that must be completed before sj

is started. At the conclusion of some bidding process, we have a set B of
bids bi, i = 1..n. Each bid bi specifies a set of tasks Si and a price pi. For
each task sj, a bid bi that includes the task (sj ∈ Si) may specify an early
start time ei

j , a late start time f i
j , and a duration di

j .
We have also defined a risk factor ri, associated with each bid, that is

based on static factors, such as the reputation of the bidder. The derivation
of ri is outside the scope of this discussion, we include it for completeness.

3.1. A straightforward model. First, we present a “direct” model,
in which the coverage and feasibility constraints are directly represented.
We associate a 0/1 variable xi with each bid bi, with the sense that in a
solution where xi = 1, bi is accepted. No pre-processing is required other
than composing the constraint rows. If we include only static risk factors
(those that are determined strictly by the set of bids chosen, and not by
scheduling considerations), the formulation of the basic bid-evaluation
problem is:

Minimize:
n∑

i=1

(pi + ri)xi

Subject to:
• Bid selection – each bid is either selected or not selected. These

are the integer variables that make this an integer programming

BID EVALUATION FOR COORDINATED TASKS 5

problem.

xi ∈ {0, 1}

• Coverage – each task sj must be included exactly once.

∀j = 1..m
∑

i|sj∈Si

xi = 1

Note that under the free disposal assumption, each task would be
included at most once, rather than exactly once.

• Local feasibility – each task sj must be able to start after the
earliest possible completion time of each of its predecessors sj′ .
This constraint ignores global feasibility. In other words, here we
are looking only at the start times of a particular task and its
immediate predecessors.

∀j = 1..m, ∀i|sj ∈ Si, ∀i′|sj′ ∈ (Si′ ∩ Pj),

xif
i
j ≥ xi′ (e

i′

j′ + di′

j′) − M(1 − xi)

where M is a “large” number (we typically use a value of 1012),
and the last term M(1−xi) is used to make the constraint satisfied
in the case where xi = 0.

In our example, the precedence relations between b1 and b4

would be expressed as

x4(15.0) ≥ x1(1.5 + 11.0)− M(1 − x4)

x1(23.0) ≥ x4(10.0 + 11.0)− M(1 − x1)

• Global feasibility – each task must be able to start after the earliest
possible completion time of each of its predecessors, where the
predecessors may in turn be constrained not by their bids, but by
their respective predecessors.

∀j = 1..m, ∀i|sj ∈ Si, ∀i′|sj′ ∈ (Si′ ∩ Pj), ∀i′′|sj′′ ∈ (Si′′ ∩ Pj′),

xif
i
j ≥ xi′d

i′

j′ + xi′′ (e
i′′

j′′ + di′′

j′′) − M(1 − xi)

∀j = 1..m, ∀i|sj ∈ Si, ∀i′|sj′ ∈ (Si′ ∩ Pj),

∀i′′|sj′′ ∈ (Si′′ ∩ Pj′), ∀i′′′|sj′′′ ∈ (Si′′′ ∩ Pj′′),

xif
i
j ≥ xi′d

i′

j′ + xi′′d
i′′

j′′ + xi′′′ (e
i′′′

j′′′ + di′′′

j′′′) − M(1 − xi)

...

In our example, the infeasibility between b1 and b4 is captured by
the constraint

x1(23.0) ≥ x4(11.0) + x1(1.5 + 11.0)− M(1 − x1)

6 JOHN COLLINS AND MARIA GINI

The number of constraints generated by these formulas is highly vari-
able, depending strongly on the details of the submitted bids and how they
interact with the precedence network in the plan. For example, in the 5
tasks – 20 bids case described in Section 4, the count varied from 10 to
24000.

3.2. Collapsing the feasibility constraints. The formulation
given in Section 3.1 is correct, but it can be dramatically improved, based
on several observations. The first is that we can pre-process the coverage
constraints to reduce the number of bids. If there is any task sj for which
only one bid bi has been received (we’ll call bid bi a “singleton” bid for task
sj), bi must be part of any complete solution. Bids bk that conflict with bi

can then be discarded. In more formal terms,

∀j|
∑

i|sj∈Si

1 = 1, xi = 1, ∀k|Si ∩ Sk 6= ∅, xk = 0

This test is repeated until no further singleton bids are detected.
Next, we make the following observations regarding the feasibility con-

straints:
1. We have generated feasibility constraints between bids that cannot

possibly be part of the same solution, because they contain over-
lapping task sets. The coverage constraints will ensure that only
one bid will be chosen to cover each task. We can discard such
constraints immediately. In our example, this means that we need
not generate or evaluate any feasibility constraints that include
both b1 and b3.

2. The feasibility constraints can be greatly simplified by doing the
arithmetic during preprocessing, and including only those con-
straints that can have an impact on the outcome. This way, we
eliminate all the feasibility constraints shown in Section 3.1, and
replace them with a much smaller number of simple compatibility
constraints. In other words, if we start with a constraint of the
form

xif
i
j ≥ xi′(e

i′

j′ + di′

j′) − M(1 − xi),

we compute f i
j − (ei′

j′ + di′

j′). Just in case the result is negative, we
include a constraint of the form

xi + xi′ ≤ 1

which will prevent both xi and xi′ from being part of the same
solution. This simplification can be similarly applied to the global
feasibility constraints. In general, such constraints tell us that for
some combination of n bids, at most n− 1 of them may be part of
a solution.

BID EVALUATION FOR COORDINATED TASKS 7

If either xi or xi′ in the above formula is a singleton, then clearly
the other cannot be part of a solution, so it can be eliminated. Also,
if both xi and xi′ are singletons, then we know the problem cannot
be solved.

In our example, we can observe the infeasibility between b1 and
b4 during pre-processing, and rather than generate the formula
given above in Section 3.1, we replace it with

x1 + x4 ≤ 1

3. If we have successive tasks in the same bid, we can filter the bids
themselves for internal feasibility prior to evaluation. After the
previous step, any constraints of the form xi + xi ≤ 1 represent
bids xi that can be discarded.

3.3. Minimizing completion time. If we want to minimize the time
to complete the plan, we must develop an expression for the completion
time. To begin with, we define t0 as the (fixed) start time of the plan.
Then we need to determine the latest time at which some task will be
completed. We needn’t consider all tasks, just the “leaf tasks,” those that
have no successors. If we ignore precedence constraints, the earliest possible
completion time tc for the plan as a whole is the maximum early finish
time of any leaf task for a given bid assignment. Since in any valid bid
assignment, only one bid is chosen for any given task, we can express this
as

tc = max
j|∀k,sj 6∈Pk

∑

i|sj∈Si

xi(e
i
j + di

j)

where a task sj that has no successors is one that is in the predecessor set
of no other tasks.

Unfortunately, it doesn’t work to ignore precedence constraints.
There may be a task in the precedence set of any given leaf task sj whose
early finish time in a given bid assignment will prevent sj from starting
at its early start time. To avoid this problem, while taking advantage of
the precedence constraints we’ve already developed, we do two things.
First, we must have a single task whose completion marks the end of the
plan; to ensure that this is the case, we create a dummy task sc, with 0
duration. We then define tc as the start time of task sc. We don’t define
a bid for this task, because we want to use its start time as a variable. We
also define the plan start time t0. Then we have to add a completion-time
term to the objective function, which now reads:

Minimize:

Wc

n∑

i=1

(pi + ri)xi + Wt(tc − t0)

8 JOHN COLLINS AND MARIA GINI

where Wc is the relative weight given to cost, Wt is the relative weight
given to completion time, and (tc − t0) is the total makespan of the plan.

Next, we add an additional set of feasibility constraints, as given above
in Section 3.1, to constrain the dummy task to start later than the com-
pletion times of all the leaf tasks. This set will include the local and global
feasibility constraints, expanded recursively to the root tasks, substituting
tc for xif

i
j . Since tc is a variable that appears in the objective function,

its final value with be the earliest time that is greater than the maximum
early completion time over all leaf tasks for any given bid assignment.

This approach does not work with the simplified form of the feasibility
constraints as given in Section 3.2. There, we have discarded the temporal
information in preprocessing, and are left with simple compatibility con-
straints. This deprives the IP solver of the information necessary to operate
on completion time. An alternative approach in this case wold be to make
completion time be a constraint, rather than a factor in the objective func-
tion. This would typically require multiple passes through the IP solver to
find an acceptable combination of price and completion time.

4. Experimental results. To illustrate the effectiveness of our for-
mulation, we have implemented both the original formulation given in Sec-
tion 3.1, and the pre-processed formulation given in Section 3.2, without
the completion-time extension. Due to resource constraints, we were only
able to run the original formulation on very small problems. We also ran
our Simulated Annealing (SA) [13] search engine [4] on the same prob-
lems for comparison. In general, results show that our IP formulation is
practical for moderate-sized problems, though it scales exponentially. On
average, it performs better than the SA approach (as it was tuned for these
experiments) for smaller problems. On the other hand, the time required
to find the optimum solution exhibits a very high variability, while SA is
an anytime method that can usually find “good” solutions in a much more
predictable amount of time. Experiments were run using dual-processor
850 MHz Linux boxes, and the Sun Java HotSpot compiler in client mode.
Timings are given in wall-clock time.

The MAGNET system is written in Java, and the IP solver is lp solve,
available from ftp://ftp.ics.ele.tue.nl/pub/lp solve/. Because we are using
an out-of-process IP solver, some well-known techniques, such as starting
with a subset of the constraint set and adding additional constraints only
if they are violated, or recording multiple solutions as the solver runs, are
not possible in our current environment.

Each problem set consists of 200 problems, with randomly-generated
plans and randomly-generated bids. Our problem generator has a large
number of parameters; we kept all of them constant except for the task-
count, bid-count, and bid-size values. Since our goal is to evaluate bids in a
time-limited multi-agent interaction situation, we are primarily interested
in scalability and predictability. Secondarily, we are interested in discover-

BID EVALUATION FOR COORDINATED TASKS 9

ing measurable problem characteristics that the agent can use to tune its
evaluation process “on the fly.”

The process for generating problems operates as follows:

1. Generate plan: The desired number of tasks is generated, and
random precedence relations are created between them, avoiding
redundant precedence links. Tasks are randomly selected from
among three “task types” that specify different values of expected
duration, duration variability, and expected resource availability.

2. Compose RFQ : An RFQ is generated by setting time windows for
the tasks in the plan, and specifying the timeline for the bidding
process. Time windows are set by determining the makespan of
the plan (the longest path through the precedence network) and
multiplying it by a “slack” factor of 1.2, then “relaxing” the time
windows for individual tasks to allow some overlap. The final result
is that individual tasks are given time windows of at least 125%
of their expected values (tasks not on the critical path will have
longer time windows).

3. Generate Bids : A specified number of attempts are made to gener-
ate bids against the RFQ. Each bid is generated by selecting a task
at random from the plan, using the task-type parameters to gen-
erate a supplier time window for that task, and testing this time
window against the time window specified in the RFQ for that
task. If the supplier’s time window is contained within the RFQ
time window, we call it a “valid task spec” and add the task to the
bid. If a valid task spec was generated, then with some probability,
each predecessor and successor link from that task is followed to
attempt to add additional tasks to the bid, and so on recursively.
The resulting bids specify “contiguous” sets of tasks, and are guar-
anteed to be internally feasible. Finally, a cost is determined for
the overall bid. Because valid task specs are not always achieved,
some attempts to generate bids will fail altogether.

The first experiment compares the performance of the original IP for-
mulation to the revised formulation. We were only able to run the original
formulation on the smallest problems (5 tasks, up to 20 bids) because
some problems were generating more than 105 rows and taking inordinate
amounts of time to solve (we stopped one after 13 hours). Table 2 shows the
results of this experiment. All entries are averaged across 200 problems.
Key features to observe are the relative problem sizes (number of rows)
and the extreme variability (given as σ(time)) of the original formulation.
For the revised formulation, the reported time is the sum of preprocessing
time and IP solver time. The time required for preprocessing is generally
between 2 and 20 times the run time of the IP solver itself, but this appears
to be time well spent. Our experience attempting to solve larger problems
with the original formulation shows that the advantage of preprocessing
grows dramatically as problem size increases.

10 JOHN COLLINS AND MARIA GINI

Table 2

Comparing IP formulations

Original IP Revised IP
Task Bid Time Time
Count Count Rows (msec) σ(time) Rows (msec) σ(time)

5 11.4 487 195 1001 16.3 71.3 144
5 13.5 869 233 937 18.6 71.0 150
5 15.0 1265 753 5125 20.3 68.8 125
5 17.0 2271 3150 16256 22.7 95.8 279

The second series demonstrates scalability of the search process, using
both the revised IP formulation and our Simulated Annealing solver, as
the size of the plan varies, with a (nearly) constant ratio of bids to tasks
(the ratio varies somewhat due to the random nature of the bid-generation
process). Tables 3 and 4 show problem characteristics for this set. In
both tables, the “Solved” column gives the number of problems solved
out of 200 (not all 200 problems were solvable). In Table 3 “Opt” shows
the number of times the optimum solution was found, “Time” is the time
taken and σ(time) gives the standard deviation of the “Time” column.
It should be noted that the performance results for the SA search are
somewhat arbitrary; the annealing schedule and stopping conditions can
be adjusted at will with respect to any measurable characteristic of the
problem. Clearly, the SA search would have achieved better optimization
results on the larger problems if we scaled it more strongly with respect to
problem size. On the other hand, the SA search does often find optimal
solutions, even though there is no way to know they are optimal. The non-
optimal solutions it reports are typically within a few percent of optimal,
even though the typical feasible solution in this environment is about 50%
worse than optimal.

Table 3

Task size experiment: Simulated Annealing

Task Bid Bid Time
Count Count Size Solved Opt (msec) σ(time)

5 13.5 2.14 188 188 10 10
10 28.5 3.20 184 178 147 391
15 45.4 4.35 179 141 524 986
20 60.8 5.21 169 118 1171 1707
25 77.6 6.30 147 89 1958 2683
30 93.3 7.41 141 80 3445 4012
35 110.6 8.69 116 66 4012 4289

In Table 4, the times for preprocessing and for the IP solver are given

BID EVALUATION FOR COORDINATED TASKS 11

separately, as “PP” and “IP”. The σ(time) column gives the standard
deviation of the sum of these two times. The individual variabilities of the
PP time and the IP time are comparable – the large values of σ in the table
are not primarily due to either process.

Table 4

Task size experiment: Revised IP

Task Bid Bid PP IP
Count Count Size Solved Rows (msec) (msec) σ(time)

5 13.5 2.14 188 19.1 10.4 34.5 15
10 28.5 3.20 184 44.3 70.1 34.3 57
15 45.4 4.35 181 85.6 191 30.2 170
20 60.8 5.21 176 145 489 40.7 380
25 77.6 6.30 165 281 1268 56.2 1423
30 93.3 7.41 157 514 3375 194 4353
35 110.6 8.69 137 861 5181 317 7100

Figure 2 shows graphically the relative average performance of the SA
and IP approaches on the task-size experiment. The striking feature of this
graph is the apparent improvement in performance of the SA approach as
problem size increases. This is an artifact of the tuning parameters, which
are cutting off the search too soon on the larger problems. We can clearly
see the corresponding dropoff in optimization performance in Table 3.

0

1

2

3

4

5

6

0 5 10 15 20 25 30 35

S
ea

rc
h

tim
e

(s
ec

)

Number of tasks

SA
IP

Fig. 2. Search time as a function of task count

In Figure 3, we show the result of varying the bid count with a fixed

12 JOHN COLLINS AND MARIA GINI

plan size of 20 tasks. Here, the exponential tendency of the IP method is
clear, while the time required by the SA method is close to linear. This
is accompanied by a corresponding fall-off of optimization performance of
the SA method as the density of solutions increases. We see this in the
data set labeled “SA opt”, which plots the ratio of the optimum solution
as determined by the IP search, to the solution reported by the SA method.

0

5

10

15

20

25

30

40 60 80 100 120 140 160 180 200

0.90

0.95

1.00

S
ea

rc
h

tim
e

(s
ec

)

S
A

 q
ua

lit
y

(o
pt

im
al

/S
A

)

Number of bids

SA
IP

SA quality

Fig. 3. Search time as a function of bid count

Finally, in Figure 4, we see the effect on search effort as the average size
of bids is varied. For this set, the task count was held constant at 20 tasks,
and the bid count was 70 bids. As in the previous set, the optimization
performance of the SA method is traded off against run time to produce
these results.

It is apparent from these experiments and others that the probability
of finding the optimal solution in a given amount of time is higher with the
IP approach than with the SA approach. For the purpose of supporting
an agent involved in a negotiation process, the key difference between the
SA and IP search methods seems to be in controllability and predictability.
Both methods exhibit a high variability in the amount of time required to
produce a solution, and no significant correlations between overall problem
characteristics and the amount of time required have been found. Nor is
there a strong correlation between the quality of the SA result and the
time required for the IP solution. More significantly, perhaps, there is no
correlation (correlation coefficient < 0.1 on all problem sets) between the
IP solution time and the SA solution time even for problems in which SA
found the optimal solution. For an agent that must make a decision in a

BID EVALUATION FOR COORDINATED TASKS 13

0

1

2

3

4

5

6

7

8

9

10

11

1 2 3 4 5 6 7 8

S
ea

rc
h

tim
e

(s
ec

)

Average bid size

SA
IP

Fig. 4. Search time as a function of bid size

fixed amount of time, the extreme variability of either approach presents
an unacceptable situation. It appears that an ideal approach would be to
run both methods in parallel. Both the IP method and the SA method can
be configured to deliver candidate solutions “on the fly”, and SA solutions
can be used to bound the IP search. This can be especially significant in
the cases where preprocessing time dominates the IP solution time.

The results given here for the Simulated Annealing search method
do not compare well with the results reported in [4], because we have
eliminated the notion of bid break-downs. In the original system, there was
an assumption that suppliers who submitted bids on multiple tasks were
also obligated to perform any subset of those tasks. This allowed the search
engine to “take apart” the bids it was given, and greatly simplified the
problem of finding a feasible, if suboptimal solution. Without the bid break-
down assumption, the problem has become significantly more difficult to
solve, and the version of the Simulated Annealing search reported here is
tuned to anneal more slowly and to search as much as 10 times longer
before terminating.

5. Related work. The determination of winners of combinatorial
auctions [8] is known to be hard. Many algorithms have been proposed to
produce good or optimal allocations. Dynamic programming [14] produces
optimal allocations, but works well only for small sets of bids, and imposes
significant restrictions on the class of bids. Nisan [10] formalizes several bid-
ding languages and compares their expressive power. He analyzes different
classes of auctions, and proposes an approach based on Linear Program-

14 JOHN COLLINS AND MARIA GINI

ming for bid allocation. Shoham [5] produces optimal allocations for OR-
bids with dummy items by cleverly pruning the search space. Sandholm [15,
17] uses an anytime algorithm to produce optimal allocations for a more
general class of bids, which includes XOR and OR-XOR bids. Andersson [1]

proposes integer programming for winner determination in combinatorial
auctions. The major difference is that in the cases studied for combina-
torial auctions, bid allocation is determined solely by cost. Our setting is
more general. Our agents have to cover all the tasks, ensure feasibility of
the bids they accept, and reduce scheduling risk.

Walsh has proposed using combinatorial auction mechanisms for
supply-chain formation [18] and for decentralized scheduling [19]. Nei-
ther of these proposals requires the allocation solver to deal with temporal
feasibility, which is the principal problem dealt with in this work.

One of the algorithms we used is based on simulated annealing [13],
and as such combines the advantages of heuristically guided search with
some random search. Since the introduction of iterative sampling [7], a
strategy that randomly explores different paths in a search tree, there have
been numerous attempts to improve search performance by using random-
ization. A variety of methods that combine randomization with heuristics
have been proposed, such as Least Discrepancy Search [6], heuristic-biased
stochastic sampling [2], and stochastic procedures for generating feasible
schedules [11], just to name a few.

6. Conclusion and future work. This work was motivated by the
need for an improved bid evaluation procedure for the MAGNET system,
and by the recent successes reported in applying Integer Programming
to the related Combinatorial Auction winner determination problem. We
have shown that Integer Programming can be applied to the problem of bid
evaluation in a combinatorial auction situation that includes temporal con-
straints among items, and lacks the free-disposal option. The formulation
we present typically requires an amount of pre-processing that is signifi-
cantly greater than the time required by the IP solver itself. A significant
weakness of the IP approach is the high degree of variability in run time.
For an agent that must perform on a fixed time schedule, this may not be
acceptable. We suggest that running a stochastic search in parallel with
an IP solver may alleviate this drawback, and provide experimental data
that supports this approach.

Several open questions remain. Many IP solution methods require a
much tighter integration between the host application and the IP solver
than we have been able to implement. This would allow the application to
set bounds, add constraints, and record interim (potentially suboptimal)
integer solutions. Such an integration would allow exploration of the po-
tential synergy between a heuristic search engine and an IP solver in time-
constrained situations such as a MAGNET agent must face. In addition,
the data reported here make it clear that the Simulated Annealing search

BID EVALUATION FOR COORDINATED TASKS 15

method needs to be better-tuned across the range of problem sizes. Both
the stopping criteria and the annealing schedule need to be better adjusted
in response to multiple problem-size measures. We have explored several
problem-size measures in this work, but others might also be important,
such as the degree of variability in bid size, task coverage, or cost/task.

It seems clear that further simplifications could be achieved in pre-
processing. For example, when a singleton is encountered, it could tighten
the time constraints, and the effects could be propagated through the task
network. We would also like to understand how to incorporate risk factors
that depend on the distribution of slack in the schedule, and how to op-
timize completion time without significantly increasing the complexity of
the problem.

REFERENCES

[1] A. Andersson, M. Tenhunen, and F. Ygge, Integer programming for combina-

torial auction winner determination, in Proc. of 4th Int’l Conf on Multi-Agent
Systems, July 2000, pp. 39–46.

[2] J. L. Bresina, Heuristic-biased stochastic sampling, in Proc. of the Thirteenth
Nat’l Conf. on Artificial Intelligence, 1996.

[3] J. Collins, C. Bilot, M. Gini, and B. Mobasher, Mixed-initiative decision

support in agent-based automated contracting, in Proc. of the Fourth Int’l
Conf. on Autonomous Agents, June 2000, pp. 247–254.

[4] J. Collins, R. Sundareswara, M. Gini, and B. Mobasher, Bid selection strate-

gies for multi-agent contracting in the presence of scheduling constraints, in
Agent Mediated Electronic Commerce II, A. Moukas, C. Sierra, and F. Ygge,
eds., vol. LNAI1788, Springer-Verlag, 2000.

[5] Y. Fujishima, K. Leyton-Brown, and Y. Shoham, Taming the computational

complexity of combinatorial auctions: Optimal and approximate approaches,
in Proc. of the 16th Joint Conf. on Artificial Intelligence, 1999, pp. 548–553.

[6] W. D. Harvey and M. L. Ginsberg, Limited discrepancy search, in Proc. of the
14th Joint Conf. on Artificial Intelligence, 1995, pp. 607–613.

[7] P. Langley, Systematic and nonsystematic search strategies, in Proc. Int’l Conf.
on AI Planning Systems, College Park, Md, 1992, pp. 145–152.

[8] R. McAfee and P. J. McMillan, Auctions and bidding, Journal of Economic
Literature, 25 (1987), pp. 699–738.

[9] P. Milgrom, Auction and bidding: a primer, Journal of Economic Perspectives,
3 (1989), pp. 3–22.

[10] N. Nisan, Bidding and allocation in combinatorial auctions, in Proc. of ACM Conf
on Electronic Commerce (EC’00), Minneapolis, Minnesota, October 2000,
ACM SIGecom, ACM Press, pp. 1–12.

[11] A. Oddi and S. F. Smith, Stochastic procedures for generating feasible schedules,
in Proc. of the Fourteenth Nat’l Conf. on Artificial Intelligence, 1997, pp. 308–
314.

[12] M. E. Pollack, Planning in dynamic environments: The DIPART system, in
Advanced Planning Technology, A. Tate, ed., AAAI Press, 1996.

[13] C. R. Reeves, Modern Heuristic Techniques for Combinatorial Problems, John
Wiley & Sons, New York, NY, 1993.

[14] M. H. Rothkopf, A. Pekec̆, and R. M. Harstad, Computationally manageable

combinatorial auctions, Management Science, 44 (1998), pp. 1131–1147.
[15] T. Sandholm, An algorithm for winner determination in combinatorial auctions,

in Proc. of the 16th Joint Conf. on Artificial Intelligence, 1999, pp. 524–547.

16 JOHN COLLINS AND MARIA GINI

[16] , Approaches to winner determination in combinatorial auctions, Decision
Support Systems, 28 (2000), pp. 165–176.

[17] T. Sandholm and S. Suri, Improved algorithms for optimal winner determination

in combinatorial auctions and generalizations, in Proc. of the Seventeen Nat’l
Conf. on Artificial Intelligence, 2000, pp. 90–97.

[18] W. E. Walsh, M. Wellman, and F. Ygge, Combinatorial auctions for supply

chain formation, in Proc. of ACM Conf on Electronic Commerce (EC’00),
October 2000, pp. 260–269.

[19] W. E. Walsh, M. P. Wellman, P. R. Wurman, and J. K. MacKie-Mason, Some

economics of market-based distributed scheduling, in Proc. of the Eighteenth
Int’l Conf. on Distributed Computing Systems, 1998, pp. 612–621.

