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Abstract

We are interested in multi-agent contracting, in
which customers must solicit the resources and ca-
pabilities of other, self-interested agents in order
to accomplish their goals. Goals may involve the
execution of multi-step plans, in which different
steps are contracted out to different suppliers. We
have developed a testbed that can generate sets of
plans with known statistical attributes, formulate
and submit requests for quotations, generate bids
with well-defined statistics, and evaluate those bids
according to a number of criteria.

1 Introduction
Companies are increasingly outsourcing production pro-
cesses to outside contractors, making supply chains longer
and more convoluted. This increased complexity will be com-
pounded by accelerated production schedules which demand
tighter integration of all processes. Completing a task re-
quires identifying suppliers with the capability to accomplish
different parts of the task. In response to a demand from a
customer, first a supply web has to be formed by the suppliers
interested in doing one or more of the tasks. Suppliers might,
in turn, decide to outsource some of their work. The supply
web must then be monitored and coordinated during the time
it takes the suppliers to actually execute the orders. Further-
more, it may need to be reconfigured if a supplier is late or
defaults on an order. The supply web is not a static entity; it
must be dynamically created as customer requests arrive and
contracts are signed. The highly distributed nature of the sup-
ply web and the inherent uncertainties [Biswas, 1997] make
automating the process challenging.

The business-to-business (B2B) e-commerce market is ex-
pected to expand rapidly in coming years, with the global
market expected to exceed $7.29 trillion in 2004, according
to Gartner Group research. Online marketplaces are gaining
popularity among companies seeking to streamline their sup-
ply chains. For buyers, a marketplace can significantly ease
the process of searching for and comparing providers, while
for sellers marketplaces provide access to much broader cus-
tomer bases. Business-to-business hubs, which link buyers
within a particular industry or across a shared need, are ex-

pected to handle as much as $1.25 trillion by 2003 [Kalin,
2000].

However, the ability to use e-commerce market infrastruc-
tures for business-to-business transactions is not yet fully re-
alized. Although business-to-business e-commerce is gaining
in popularity, few manufacturers are participating in it, ac-
cording to a recent survey conducted by the Association of
Manufacturers on 2,500 U.S. manufacturers. Only 32% use e-
commerce, but only 12% of them procure intermediate parts
or sub-assemblies online.

The proliferation of business-to-business portals such as
CommerceOne (www.commerceone.com) and Vertical-
Net (www.verticalnet.com) clearly shows the need
and industry demand for third-party value-added services
such as security, match-making, and trusted intermediaries.

However, there are no existing frameworks to enable auto-
mated negotiation and contracting among manufacturers, part
suppliers, and specialized subcontractors. The major chal-
lenge in automating negotiations beyond what is currently
available comes from the necessity to go beyond simple buy-
ing and selling, to incorporate time constraints, to enforce
deadlines, to interact with a highly distributed web of suppli-
ers with different capabilities and resources, to interact over
long periods of time through the completion of the contracted
work, and to deal with failures in contract execution.

To help automate logistics planning among multiple en-
tities such as manufacturers, part suppliers, shippers, and
specialized subcontractors, we have proposed a market ar-
chitecture. called MAGNET (Multi AGent NEgotiation
Testbed) [Collins et al., 1998]. MAGNET provides sup-
port for a variety of types of transactions, including complex
multi-agent contract negotiations. We have implemented a
prototype implementation of the bid-evaluation part of MAG-
NET, and we’ll release it to the research community in 2001.
Other parts of the MAGNET system will be released over the
following two years.

This paper is organized as follows: Section 2 describes the
MAGNET architecture and the basic activities and roles of
agents in that environment. Section 3 describes our experi-
mental implementation of a Customer agent that we are using
to explore agent decision processes. Section 4 describes the
implementation of abstract Supplier agents. Section 5 de-
scribes related work, and Section 6 concludes and outlines
our future plans and open problems.



Figure 1: The MAGNET architecture

2 Agents and their Environment

We model the supply-chain formation and management prob-
lem using a community of self-interested agents with limited
rationality, each representing a business entity or a decision-
maker. Agents may act autonomously, or as decision-support
tools for human decision-makers. The MAGNET model in-
cludes a market infrastructure that connects buyers and sell-
ers, enforces protocol rules, and collects statistics for use in
agent planning and evaluation processes.

MAGNET gives an agent the ability to use market mech-
anisms (auctions, catalogs, timetables, etc.) to discover and
commit resources needed to achieve its goals. We assume that
agents are heterogeneous and self-interested, and may be act-
ing on behalf of different individuals or commercial entities
who have different goals. Although we use auction mecha-
nisms, the problem a MAGNET agent must solve is a combi-
nation of a scheduling problem and a combinatorial auction
problem.

We need to keep in mind that buyer-supplier relationships
depend on factors such as quality, delivery performance, and
flexibility as opposed to just cost [Helper, 1991], and these
must be taken into account in automated negotiation. To
model the uncertainties in the decision process, we use Ex-
pected Utility Theory [Biswas, 1997], which describes hu-
man economic decision-making. Expected Utility Theory
models decision-making under uncertainty by using proba-
bilities and a construct known as a utility curve,
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function that maps a level of “wealth” to a level of utility.
Expected Utility Theory can guide the agent in situations in
which there is a trade-off between the overall cost of a plan
and the likelihood of the plan succeeding. For example, the
agent may need to choose between suppliers, some of whom
charge a higher price but are more likely to complete the task
successfully, while others may be less likely to complete the
task on time but may charge less. By computing the expected
utility of the scenarios, the agent can choose from among
them [Collins et al., 2001].

Agents may fulfill one or both of two roles, as shown in
Figure 1. Customer agents pursue their goals by contracting

to Supplier agents tasks they themselves cannot or are unwill-
ing to carry out. Supplier agents have resources or services to
sell.

Customer agents formulate and present Requests for Quo-
tations (RFQs) to Supplier agents through the market [Collins
et al., 1998]. The RFQ specifies a task network that includes
task descriptions, a precedence network, and possibly other
time constraints. Customer agents attempt to satisfy their
goals for the least net cost, where cost factors can include not
only bid prices, but also goal completion time and risk fac-
tors. More precisely, these agents are attempting to maximize
the utility function of some user, as discussed in [Collins et
al., 2001].

Supplier agents attempt to maximize the value of their re-
sources by submitting bids in response to those RFQs, speci-
fying what tasks they are willing to undertake, when they are
available to perform those tasks, and at what price. Bids may
specify combinations of tasks with a single price, and may
include prices on individual tasks. Prices for multiple tasks
can include a discount or a premium.

A contract is a commitment the agent makes and has legal
value [Singh, 1999]. We assume the market has rules to spec-
ify the conditions and penalties for breaking a contract that
agents agree to when they register with the market.

When signing a contract, an agent takes multiple
risks [Collins et al., 2000a]. One or more suppliers might
back out of the agreement, or fail to deliver on time, with
potentially devastating cascade effects through the remaining
parts of the plan. What happens if a part is not delivered on
time, so the next step in the processing cannot be done? what
if the agent does not succeed in renegotiating its contracts?
should it decide to default on them, pay a penalty, and issue a
new RFQ, or should it pay a premium for changing the terms
of its current contracts? The agent’s goal might have a time-
dependent value, so at some point it might not be worth trying
to accomplish it. An agent must also consider the effects of
its actions on its reputation in the market.



3 A Customer Agent

We now focus on the structure and responsibilities of a Cus-
tomer agent in the MAGNET environment. As indicated in
Figure 1, the basic operations are planning, bidding, and plan
execution. We have implemented a simple Planner that gen-
erates random plans with well-defined statistics, and a Bid
Manager with a fairly rich implementation of tools for com-
posing RFQs and selecting bids. The Execution Manager is
not yet implemented.

3.1 Planner

The Planner’s task is to turn goals into executable plans, rep-
resented as task networks. A task network consists of a set of
task descriptions, the temporal constraints among them, and
possibly nonzero delays between tasks, to cover communica-
tion and transportation delays. An example task network is
shown in Figure 2.
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Figure 2: Example task network

The planner in the testbed generates tasks by selecting ran-
domly from a library of task types, and then creates random
precedence relations among them. It can also accept pre-
defined plans. We expect that in many domains, plans will
be chosen from a library or defined by a human user rather
than being generated by a general-purpose planner.

The definitions of tasks in the Domain Model are shared
among the agents. This model includes not only the task def-
initions, but statistics (presumably collected by the market)
about each task type. These statistics include expected du-
ration and variability, expected price and variability, and re-
source availability data.

3.2 Bid Manager

The Bid Manager is responsible for ensuring that resources
are assigned to each of the tasks of a plan, that the assign-
ments taken together form a feasible schedule, and that the
cost and risk of executing the plan is minimized. This cost
must also be less than the value of the goal at the time the
goal is reached.

When the Bid Manager is invoked, some tasks may already
be assigned. This can occur because the Execution Manager
may use the Bid Manager to repair a partially-completed plan
in which previously determined assignments have failed, be-
cause the agent will perform some of the tasks itself, or be-
cause bidding is being carried out in multiple stages.

The Bid Manager must construct and issue a RFQ, evaluate
bids, and accept bids in order to carry out its responsibilities.
Its high-level structure is shown in Figure 3.

Figure 3: The Bid Manager

Process Planner
The Process Planner creates the high-level agenda for the Bid
Manager. Its primary responsibility is to allocate time to
negotiation and plan execution. It is responsible for decid-
ing which markets to use, when to consult local catalog and
timetable databases, and how to break up the plan accord-
ingly. If the plan has alternative branches, it may also decide
which alternatives to pursue and in what order. For example,
it may decide to solicit bids on a high-value but risky ap-
proach, and if that fails to fall back on a lower-value but safer
alternative. It could also decide to defer taking bids on later
tasks until earlier tasks were underway or even completed.

Negotiation Manager
The Negotiation Manager handles the actual bidding process.
Its overall job is to attach to the plan a feasible, minimum-
cost set of resource assignments. It uses the Bid Evaluator to
decide among alternative bid combinations.

Figure 5: The Negotiation Manager

The Negotiation Manager is further broken down into a set
of components, as shown in Figure 5. The Bid Scheduler
assembles a schedule for the bidding process, possibly sub-
dividing the time allocated by the Process Planner, and adds
items to the agenda to drive the Auction Manager. Dividing
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Figure 4: A timeline showing a set of tasks and alternative time allocations.

the bidding process into multiple phases can be an important
strategy to reduce the level of uncertainty in the plan.

We have implemented several different versions of the Bid
Scheduler to experiment with different strategies. Ultimately
it will be up to the Process Planner to decide which strategy
(or strategies) to use, and configure the Bid Scheduler accord-
ingly through its agenda entries.

Before bids can be solicited in a market, an RFQ must be
composed. The RFQ is a structure that contains some por-
tion of the plan data (tasks and precedence relations) as de-
termined by the Bid Scheduler, along with a set of scheduling
constraints. The primary role of the RFQ Builder is to deter-
mine those scheduling constraints. Information comes from
several sources:

� From the Planner, we have a set of tasks and their prece-
dence constraints. This information is contained in the
plan.

� From the Market, we have statistical information about
duration and variability for the different task types. We
also have information about resource availability and the
number of vendors who are likely to bid on tasks of this
type.

� From the Process Planner, we have the overall schedule
for the execution of the plan.

� From the Bid Scheduler, we know which tasks are to be
advertised for bid in the current RFQ.

The RFQ Builder has to produce an RFQ that will solicit
the most advantageous set of bids possible. The approach we
take is to find a balance between giving maximum flexibility
to suppliers, ensuring that the resulting bids will combine fea-
sibly, and ensuring that the job will be completed by the dead-
line. We do this by setting early-start and late-finish times in
the RFQ for each task, as follows.

The RFQ Builder constructs an initial schedule using the
expected duration data, and sets the initial time windows us-
ing the Critical Path algorithm [Hillier and Lieberman, 1990].
The Critical Path algorithm walks the directed graph of tasks
and precedence constraints, forward to compute the earliest
start times for each task, and then backward from the goal
time to compute the latest finish and latest start times for each
task. The minimum duration of the entire plan is called the
makespan of the plan. The difference between the goal time
and the latest early finish time is called the total slack of the
plan.



In Figure 4 the gray bars show the expected durations of the
tasks in the task network illustrated in Figure 2. The overall
slack chosen in the schedule is 5 units for a 35 unit makespan,
or about 14%. In the figure, the light bars show durations that
are 1 standard deviation below the expected values, while the
dark bars show an alternative formulation in which the total
expected slack is apportioned among the tasks on the critical
path to produce an RFQ that has no overlap among adjacent
tasks. The former is likely to produce more bids, and poten-
tially lower-cost bids, because of the additional scheduling
flexibility offered to suppliers. The latter will reduce the ef-
fort the Customer agent must expend to compose a feasible
plan, assuming bids are received to cover all the tasks. Spec-
ifying larger time windows without lengthening the overall
schedule will increases the chance that bids from different
suppliers will fail to satisfy the precedence relationships.

The optimal setting of RFQ time windows requires detailed
knowledge of other factors such as likely numbers of bid-
ders and likely constraint tightness on the resources needed
to carry out the tasks. Since the Customer agent cannot know
this data precisely, we must use approximations. We assume
the market will maintain statistics to support this, but there is
clearly more work to be done in this area.

The Auction Manager interacts with the Market and/or
other agents to solicit bids. Different versions of the Auction
Manager can be implemented to interact with different mar-
ket environments. We have a version that uses a MAGNET
market to solicit bids, and one that uses a set of in-process
simulated Supplier agents directly to generate bids for testing
purposes. The latter version is useful for doing large statisti-
cal studies where throughput is a critical factor.

Bid Evaluator
A Bid Evaluator is a search engine that takes a plan and a
set of bids, and attempts to find an optimal or near-optimal
mapping of bids to tasks, respecting temporal constraints. It
must do this within the period of time allocated by the Pro-
cess Planner, which may have been subdivided by the Bid
Scheduler.

If the agent is not able to process the bids fast enough, it
might miss good deals and spend all its time processing bids
instead of awarding contracts. A hostile agent could submit
a huge number of bids to prevent another agent from accom-
plishing its task, although the market could be configured to
limit this. Transaction or entry fees could be added to reduce
the number of bids, but since they could discourage agents
from submitting bids, they have to be designed carefully [An-
derson et al., 1999].

We have implemented two evaluators. One is based on In-
teger Programming [Collins and Gini, 2001], and the other
is a highly modular Simulated Annealing (SA) search en-
gine [Collins et al., 2000b].

The Integer Programming (IP) solver operates in two
phases. The first phase generates basic bid-compatibility con-
straints, and then walks all paths of length 2 or greater in the
precedence network, across all compatible bid combinations,
to discover feasibility constraints. These are then packaged
up and sent off to an external IP solver.

The core part of the simulated-annealing engine is similar

to the one described in [Reeves, 1993]. Starting with a plan
and a set of bids, we generate and evaluate bid mappings un-
til one of several stopping conditions holds. These include
failure to find improvement for a configurable number of it-
erations, expiration of the deliberation time limit, and lack of
mappings that have any untried expansions.

In our experiments, we have noticed that there is a signifi-
cant variation in the amount of time taken by the IP method to
terminate. We are exploring how to combine the IP optimizer
with the simulated annealing engine to produce an any-time
behavior. This is important because MAGNET agents might
have a strictly limited amount of time to make bid-award de-
cisions.

3.3 Execution Manager
The Execution Manager is responsible for overseeing execu-
tion of the plan as contracted, and making decisions on how to
respond when events do not proceed as expected. It receives
the task assignments from the Bid Manager and, through the
market, receives updates on plan execution from contracted
vendors. It maintains a time map with tasks, vendor com-
mitments, and temporal constraints among tasks. For each
event, it must decide whether to respond, and if so, whether
to respond directly to a particular vendor, whether to re-bid
a portion of the plan, or whether to re-plan and re-bid one or
more subgoals of the plan.

All the activities of the Execution Manager revolve around
the maintenance of the time map. The time map [Dean and
McDermott, 1987] can be thought of visually as a Gantt chart,
decorated with contract data and temporal constraints among
tasks. For each task the time map records an early start, a late
finish time, the committed start time and duration, and the set
of precedence constraints.

As time passes and the execution of the plan proceeds, the
Execution Manager works in conjunction with the market to
drive the plan to completion. In general, the market session
is responsible for releasing tasks to the suppliers when their
prerequisites are satisfied, and for assessing decommitment
penalties when the parties fail to satisfy their commitments.
In the process, the session forwards to the Execution Manager
notifications of task release and task completion events. The
Execution Manager is then responsible for making decisions
and taking appropriate action in response to those notifica-
tions.

The Execution Manager has not yet been implemented.

4 Supplier Agents
Since our primary interest has been in the workings of the
Customer agent, our prototype Supplier agents are fairly
simple-minded entities. They receive RFQs, and they respond
by submitting bids. They do not maintain resource schedules,
and they have no persistent identity.

The basic structure is shown in Figure 6. Each of these
three layers is implemented as an abstraction with multiple
implementations.

A Bid-Set Generator generates sets of bids and returns
them to the Customer agent. Example Bid-Set Generators
include one that always bids on certain task types if they are
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Figure 6: Simple Supplier Simulation

present in the RFQ, one that generates a random set of bids,
and one that extends the random set generator by attempting
to generate a set that covers all tasks in the RFQ.

A Bid Generator generates a single bid, possibly contain-
ing multiple individual task-bids. The average sizes, and the
degree of size variability, of the bids produced are determined
by configuration parameters, and in some cases by the struc-
ture of the plan and the type of Bid Generator selected. We
have implemented Bid generators that can generate bids for
certain types of tasks, random collections of tasks, or sets of
tasks that are connected by precedence relations. An obvious
extension would be to generate role-based bids in the sense
of [Hunsberger and Grosz, 2000].

A Task-Bid Generator produces a bid for a single task. The
bid specifies the task to be performed, the expected duration
of the task, and early start and late finish time window data. In
most cases it must also assign a cost to the task, which the Bid
Generator will use in composing the overall cost for the bid.
The duration and cost are selected from random distributions
specified in the task-type description. The early-start and late-
finish times are also randomly generated from the resource-
availability data in the task-type description.

The constraints on the time window for the Task-Bid come
from two sources:

1. the time window specified in the RFQ, and

2. the times already specified in other Task-Bids for tasks
that are immediate predecessors or successors of the cur-
rent task.

If the Task-Bid generator cannot fit the requested task into the
time window, it fails to produce a result, and the bid will not
include that particular task.

5 Related Work
Markets play an essential role in the economy, and market-
based architectures are a popular choice for multiple agents
(see, for instance, [Chavez and Maes, 1996; Sycara and
Pannu, 1998; Wellman and Wurman, 1998]. Most market
architectures limit the interactions of agents to manual nego-
tiations, direct agent-to-agent negotiation [Sandholm, 1996;
Faratin et al., 1997], or various types of auctions [Wurman et
al., 1998].

Existing architectures for multi-agent virtual markets typ-
ically rely on the agents themselves to manage the details
of the interaction between them, rather than providing ex-
plicit facilities and infrastructure for managing multiple ne-
gotiation protocols. In our work, agents interact with each
other through a market. The market infrastructure provides
a common vocabulary, collects statistical information that
helps agents estimate costs, schedules, and risks, and acts as
a trusted intermediary during the negotiation process.

Auctions are the predominant mechanism for agent-
mediated electronic commerce [Wurman et al., 1998; Sand-
holm, 1999]. Methods for improving the efficiency of com-
binatorial auctions have been developed, among others, by
Sandholm [Sandholm, 1999] and Fujishima [Fujishjima et
al., 1999]. Mixed integer programming has been demon-
strated to work extremely well even on large problems by An-
dersson [Andersson et al., 2000]. Walsh et al [Walsh et al.,
2000] study combinatorial auctions for problems in supply
chain, but ignore time constraints. However, none of those al-
gorithms has been applied to situations with time constraints
of the type and complexity we are concerned with. MAG-
NET agents have to deal with multiple resources. Customer
agents use the bidding process as a way of obtaining the use
of resources of supplier agents. Customer agents have also to
ensure the scheduling feasibility of the bids they accept, and
must evaluate risk as well as simple schedule feasibility.

MAGNET agents are similar to the agents used for col-
laborative planning by [Hunsberger and Grosz, 2000], where
combinatorial auctions are used for the initial commitment
decision problem, which is the problem an agent has to
solve when deciding whether to join a proposed collabora-
tion. Their agents have precedence and hard temporal con-
straints. However, to reduce search effort, they use domain-
specific roles, a shorthand notation for collections of tasks. In
their formulation, each task type can be associated with only
a single role. MAGNET agents are self-interested, and there
are no limits to the types of tasks they can decide to do.

6 Conclusions and Future Work
The MAGNET testbed is a prototype implementation of a
Customer agent, along with simulated Supplier agents. It
is highly configurable and extensible, and has been used for
several statistical studies aimed at understanding the deci-
sion processes of a Customer agent. The current system has
proven to be very useful for the statistical studies we have
pursued so far. Future plans call for more focus on mixed-
initiative interaction, and our current user interface is too
primitive to support that work.

Some domains, notably the International Shipping domain
we are currently studying in collaboration with an Import-
Export firm, will require an enhanced plan representation to
deal with the fact that alternate routes or shipping modalities
may be acceptable.

A major need in this area of research is the establishment
of a set of benchmark problems by which different strategies
can be compared. Leyton-Brown et al [Leyton-Brown et al.,
2000] have proposed a test suite called CATS for testing com-
binatorial auction systems. It solves part of the problem, but



it only deals with bids, not the RFQ, and it does not handle the
precedence relations needed in the MAGNET environment.
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