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Abstract

We are interested in supporting multi-agent contracting, in which customer agents solicit
the resources and capabilities of other, self-interested agents in order to accomplish their goals.
Goals may involve the execution of multi-step tasks, in which different tasks are contracted out
to different suppliers. We have developed a testbed that allows us to study decision behaviors of
agents in this context. It can generate sets of tasks with known statistical attributes, formulate
and submit requests for quotations, generate bids with well-defined statistics, and evaluate those
bids according to a number of criteria. Each of these processes is supported by an abstract
interface and a series of pluggable modules with a large number of configuration parameters,
and with data collection and analysis tools.

1 Introduction

The business-to-business e-commerce market is expected to expand rapidly in coming years, with
the global market expected to exceed $7.29 trillion in 2004, according to Gartner Group research.
Online marketplaces are gaining popularity among companies seeking to streamline their operations.
Online marketplaces offer benefits to both buyers and sellers. For buyers, a marketplace can
significantly ease the process of searching for and comparing providers, while for sellers marketplaces
provide access to much broader customer bases [26]. Business-to-business hubs, which link buyers
within a particular industry or across a shared need, are expected to handle as much as $1.25
trillion by 2003 [18].

Over the past decade, the complexity of logistics involved in manufacturing and other business
activities has been increasing nearly exponentially. Many processes are being outsourced to outside
contractors, making supply chains longer and more convoluted. The increased complexity is often
compounded by accelerated production schedules which demand tight integration of all processes.

∗Partial support for this research was provided by NSF under award NSF/IIS-0084202
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Thus, the field is ripe for the introduction of systems that automate logistics planning among
multiple entities such as manufacturers, part suppliers, shippers, and specialized subcontractors.

Deciding what to outsource and to whom, ensuring that the tasks are done in the proper
sequence (parts cannot be painted before they are finished) and that the final product is ready
within the time constraints, is currently the job of a human decision-maker. A schedule with slack
between tasks is less risky than a tight schedule, but in made-to-order products speed is the essence
and taking extra time might prevent a supplier from getting a contract. The decision-maker also
has to keep track of any delays from suppliers that could jeopardize the completion of the tasks,
and renegotiate with them or others as needed.

The proliferation of business-to-business portals such as CommerceOne (www.commerceone.com)
and VerticalNet (www.verticalnet.com) clearly shows the need and industry demand for value-
added services such as security, match-making, and trusted intermediaries. However, a market
framework for B2B interactions which can successfully address the full spectrum of the requirements
mentioned above needs to provide the ability to automate contracting activities among participants,
as well as provide support for automated agents that act on behalf of these participants.

Computerized agents can examine offers much more quickly than humans can. Choices that
are too complex for humans, because of the large number of alternatives, or the complexity of the
computations, can be programmed and executed by software agents. We believe that agent-based
contracting will result in cheaper and faster contract negotiations, freedom from human errors,
prompter deliveries, and thus, ultimately, in reduced costs for both suppliers and customers.

If autonomous or semi-autonomous agents are to be used, it is imperative that the creation,
modification, and deployment of these agents is cost effective. Furthermore, since potentially
billions of dollars are at stake, it is imperative that the agents exhibit the desired behavior when
they are deployed. In short, a cost effective agent development methodology producing agents with
predictably correct behavior is a necessity.

In this paper we present a market architecture that supports multi-agent contracting, and we
describe the implementation of a prototype of the market architecture and of the agents. We call
this system MAGNET (Multi AGent NEgotiation Testbed). MAGNET provides support for a
variety of types of transactions, from simple buying and selling of goods and services to complex
multi-agent negotiation of contracts with temporal and precedence constraints.

Our major goal in this paper is to describe the main features of MAGNET and to show how
MAGNET can be used to develop a sufficiently realistic simulation of an actual market. MAGNET
is not yet a complete simulation of a market. Currently, it is focused on the process of determining
the form and content of Requests for Quotations (RFQs), on the management of the bidding
process, and on the evaluation of bids submitted by suppliers.

This paper is organized as follows: Section 2 outlines the advantages of a market infrastructure.
Section 3 describes the MAGNET infrastructure and the basic activities and roles of the agents.
Customer agents are described more in detail in Section 4. Section 5 describes the testbed and
gives some examples of the types of studies supported by this framework. Section 6 describes the
architectural design and implementation of MAGNET. Section 7 provides a detailed example of a
customer agent and its activities. Section 8 describes related work, and Section 9 concludes and
outlines our future plans and open problems.
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2 Market Infrastructure

Electronic commerce on the Internet is one of the fastest growing segments of the information
and communication technology and has potential for enormous economic benefits for companies
worldwide [40]. With the advent of the open standard and the growth of fast and inexpensive stan-
dardized communication infrastructure, more organizations and individuals are relying on virtual
environments such as the Internet for a variety of commercial activities, including the exchange,
marketing and promotion of goods or services, and contracting. This, in turn, has led to an in-
creasing demand for innovative technologies and mechanisms that support automated transactions.

The current trend is to move towards hub and spoke architectures, where suppliers, customers,
and trading partners need only one connection to communicate with each other [26]. This con-
trasts with the more traditional point-to-point connections supported by proprietary value-added
networks, which are more expensive, harder to scale, not transparent, and whose high entry costs
tend to keep out small companies.

We outline briefly several major advantages in providing a market infrastructure to support
human decision makers or automated agents.

Support for multi-agent negotiation over extended time periods. Negotiations may require
extended periods of time to complete, during which a context must be maintained. The time
during which the negotiated transaction extends can also span significant periods of time,
in the range of weeks to months. A market infrastructure simplifies the task of maintain-
ing the state of transactions over time. Most negotiation protocols involve time limits, such
as a deadline for receipt of bids. All parties to a time-sensitive negotiation process must
have a common time reference. The market can provide this, as well as methods to validate
non-performance, and to assess negotiated penalties.

Value-added services. Value-added services, such as matchmaking [33] or publish-subscribe fa-
cilities for notification of important events, are is particularly important for two reason. First,
participants can continuously issue or retract registered capabilities in various domains. This
makes it difficult for individual participating agents to keep track of and have access to the
most up-to-date information. Secondly, such a facility provides a form of filtering and reduces
the computational costs during bid evaluation.

Furthermore, the market may serve as a repository of statistical data about various par-
ticipants. This may include general statistics about availability of suppliers with specific
capabilities, or independent ratings based on past performance. The general statistical infor-
mation is useful for customer agents in formulating a Request For Quotes, while performance
ratings can be used to determine the price associated with various bids.

Protection against fraud and misrepresentation. We must assume that participating self-
interested agents will exploit any opportunities that exist to gain advantage. The market
facilitates recognizing and protecting against situations that allow agents to gain unfair ad-
vantage at the expense of other agents. Strategies that can result in this type of “unfair”
gain include:

• Hiding one’s identity or taking on the identity of another. This includes changing identity
in order to escape the consequences of poor service on prior commitments.
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• Dishonest auctioneer - In Vickrey-type auctions [37, 36], the motivation for truth-telling
on the part of participants is predicated on their belief in the honesty of the auctioneer.

• Mis-communication of the rules under which a transaction is being conducted.
• Failure to follow through on commitments.

Discouragement of counterspeculation. Opportunities for counterspeculation arise when the
rules of negotiation allow agents to gain advantage by making use of factors other than their
own capabilities and valuations [20]. We are concerned with two general types of counter-
speculation. Value-based counterspeculation [28, 37, 36] occurs when agents use their own
estimates of each other’s valuations to set bid prices. In [8], we identified two classes of time-
based counterspeculation opportunities. One of these situations occurs when supplier agents
are allowed to expire their bids before the Request for Quotes expires. This forces customers
to make decisions without full information on other, possibly more advantageous bids. The
other situation occurs when suppliers believe that the customer will start to evaluate bids
before all bids are received. If the supplier believes that the customer’s resource limitations
will prevent full consideration of all bids, then early submission of bids, at potentially higher
prices, can be used to skew the customer’s reasoning process.

The market provides a neutral third-party facility that can be used to control and filter
protocol exchanges to reduce both value-based and temporal counterspeculation. It is up to
the agents to decide the extent to which these facilities are used, since they may slow the
negotiation process or reduce the information exchange.

3 The MAGNET Architecture

We have designed a market infrastructure, which we call MAGNET [10] and implemented it as a
distributed system that can be used to support electronic commerce in a variety of domains. The
fundamental elements of MAGNET are the market, the market sessions, and the agents.

3.1 Market

Figure 1: The Structure of a Market
c©1998 by ACM, Inc., appeared in [10]
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Each Market within MAGNET is a forum for commerce in a particular business area, and
includes a set of domain-specific services, as shown in Figure 1, and each market draws upon
common services. Important elements of the market include:

• A Registry of market participants who have expressed interest in doing business in the market.
Entries in this registry include the identity of a participant, a catalog (or a method for
accessing a catalog) of that participant’s interests, products or capabilities, which can be
used for matchmaking [33].

• An Ontology specifying the terms of discourse within the domain of the market. Agents
who wish to offer resources and services do so through one or more market segments whose
ontologies describe their offerings. The market we will describe later in our example covers
production, bottling, and shipment of wine. The ontology includes not only the task defini-
tions, but statistics collected by the market about each task type. These statistics include
expected duration and variability, expected price and variability, and resource availability
data.

• A Protocol Specification that formalizes the types of negotiation supported within the market.
These are limits on parameters of the negotiation protocol, such as whether bids can be
awarded before the bid deadline, etc.

3.2 Market Sessions

An important component of each market is a set of current Market Sessions in which the actual
agent interactions occur. Each session is initiated by a single agent for a particular purpose, and
in general multiple agents may join an existing session as clients. The session enforces the protocol
rules, and maintains its internal state according to the protocol activity and the passage of time.
The session extends from the initial RFQ through the negotiation, awards, construction work,
paying of bills, and final closing. The session mechanism ensures continuity of partially-completed
transactions, and relieves the participating agents from having to keep track of detailed negotiation
status themselves.

Figure 2: The Structure of a Market Session
c©1998 by ACM, Inc., appeared in [10]

Figure 2 shows the structure of a session. Two APIs are exposed, one for the session initiator
and one for session clients. Each session contains an Initiator Proxy that implements the Initiator
API and persistently stores the current state of the session from the standpoint of the initiator. A
Client Proxy is provided for each client that similarly provides a Client API to the client agent,
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and persistently stores the current state of the session from the standpoint of the client. Proxies
are market entities that act on behalf of the agents and enforce market rules.

There are two major reasons for the existence of the proxy components. The first is related to
security: client proxy components cannot see the private data of the initiator or of other clients. The
second is that in a distributed system environment, the processing and persistent data elements of
the initiator and clients could occur at different locations in the network to maximize performance.

3.3 MAGNET agents

Each agent in MAGNET is an independent entity, which may be acting on behalf of different
individuals or commercial entities who have different goals and different resources.

We distinguish between two agent roles, the Customer and the Supplier. A Customer is an
agent who has a goal to satisfy, and needs resources outside its direct control in order to achieve its
goal. The goal may have a value that varies over time. A Supplier is an agent who has resources
and who, in response to a request for quotes, may offer to provide resources or services, for specified
prices, over specified time periods.

An architectural view of these agents and their primary interactions is shown in Figure 3.

Figure 3: The MAGNET architecture

The negotiation process consists of a contracting phase and a execution phase. The contracting
phase is a first-price, sealed-bid combinatorial auction consisting of a Request For Quotes, Bid-
ding, and Bid Awards. This three-step process is designed to simplify negotiations without loss of
generality. It is modeled after the leveled commitment protocol proposed by Sandohlm [31]. The
resulting task assignment forms the basis of an initial schedule for the execution of the tasks. The
execution phase may involve additional negotiations over schedule adjustments, decommitments,
and in some cases repeating the bidding cycle when it becomes necessary to re-allocate resources
that had originally been committed.

During the bidding cycle, customer and suppliers communicate by exchanging messages, which
are routed by the market.

• The customer issues an RFQ which includes a specification of each task, and a set of prece-
dence relations among tasks. For each task, a time window is specified giving the earliest
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time the task can start and the latest time the task can end.
• Suppliers submit bids and commit to resources (with the possibility of overcommitment) until

the bids get awarded or rejected by the customer. A bid includes a price for the task, a portion
of the price required to be paid as a non-refundable deposit at the time the bid is awarded,
an estimated duration for the task, and a time window within which the task can be started.

• The customer decides which bids to accept. Each task needs to be covered (i.e. no free
disposal [24]) and the constraints of all awarded bids must be satisfied in the final work
schedule.

• The customer awards the chosen bid combination, pays the deposit, and specifies the work
schedule for the suppliers.

• Each supplier starts executing the tasks awarded and tries to complete them in the specified
time frame. When the supplier completes a task, the customer pays the remainder of the
price. If the supplier fails to complete a task, the price is forfeit and the deposit must be
returned to the customer. A penalty may also be levied for non-performance.

Once bids have been awarded, a secondary protocol allows agents to negotiate schedule changes.
This avoids outright failure and reduces risk for both parties, at the cost of complicating the
behavioral requirements of agents during plan execution.

4 Customer Agents

A Customer agent, as illustrated in Figure 3, has three major components: the Planner, the Bid
Manager, and the Execution Manager.

4.1 Planner

The Planner’s job is to generate a task network from the top level goal. A task network consists
of a set of task descriptions, the temporal constraints among them, and possibly nonzero delays
between tasks, to cover communication and transportation delays. An example is shown later in
Figure 7.

In our current implementation, a task network is created either by selecting a pre-defined plan
from a library of plans, or by selecting randomly from a library of task types, and creating random
precedence relations among them. We expect that in many domains, plans will be chosen from a
library or defined by a human user rather than being generated by a general-purpose planner.

The task network generated by the Planner is a central data structure, used by the Bid Manager
to generate RFQs and to evaluate timing data of bids, and by the Execution Manager to monitor
and repair the ongoing execution of the plan.

4.2 Bid Manager

The high-level structure of the Bid Manager is shown in Figure 4. Each of its components is in
charge of one of the major decisions the customer agent has to make during the bidding cycle. Since
the customer agent is ultimately required to make decisions acceptable to a human decision-maker,
it must have the ability to handle decision-making under uncertainty. We have studied how to
incorporate Expected Utility Theory [5] in these decision processes.
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Figure 4: The Bid Manager

1. The first decision is to determine how much time suppliers are given to submit bids, and
to determine an approximate schedule by setting limits on the start and end times for each
individual task. This decision is made by the Process Planner. The more time the customer
keeps for its own decisions, the more flexibility it has in deciding whether to accept bids, or
post a new RFQ if not enough bids are submitted. However, this comes at the expense of the
time devoted to executing the tasks, and reduces flexibility for the suppliers, so it is likely to
increase costs.

In the current version the Process Planner simply reads an agenda from a configuration file or
a user interface. In the future it will be responsible for deciding which markets to use, when
to consult local catalog and timetable databases, and how to break up the plan accordingly.
If the plan has alternative branches, it may also decide which alternatives to pursue and in
what order.

2. Next, a decision has to be made on whether to divide the tasks among multiple RFQs or
submit a single RFQ and determine its contents. This is the job of the Negotiation Manager.

It first decides a schedule for the bidding process, possibly subdividing the time allocated by
the Process Planner to multiple RFQs. High scheduling uncertainty leads to either having to
leave large amounts of slack in the schedule, which delays the completion of the tasks, or to
generate RFQs with large overlaps in task timing, which causes many bids to be unusable.
When this is the case, an alternative is to split the bidding process into phases, so that the
schedule variability in each phase is limited. We have designed several methods to do this, and
we are experimenting to understand how they perform, what the tradeoffs are, and how to
recognize situations where multi-phase bidding is advantageous. Preliminary results suggest
that multiphase bidding can generate tighter schedules on average, at the same price, and
that search effort on the customer side is reduced substantially. On the other hand, the time
required for the overall bidding process may easily become dominated by the time required for
supplier deliberation, and opportunities for suppliers to submit “package” bids are reduced.

The next step is to compose one or more RFQ. The RFQ is a structure that contains tasks and
precedence relations along with a set of scheduling constraints. Scheduling constraints are
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determined using (1) the precedence constraints from the task network for the tasks included
inthe RFQ, (2) statistical information about duration and variability for the different task
types, as well as information about resource availability, and number of vendors who are likely
to bid, which are available from the market; (3) the overall schedule for the execution of the
plan generated by the Process Planner. Figures 8 and 9 show examples of RFQs.

The primary purpose of the RFQ is to solicit the most advantageous set of bids possible. This
requires finding a balance between using large windows that give flexibility to suppliers and
ensuring that the bids will combine feasibly and the job will be completed by the deadline. We
do this by setting early-start and late-finish times for each task. Preliminary results indicate
that, given a reasonable number of bidders, some amount of overlap in the time windows
between successive tasks gives better results than a RFQ specification that has no overlaps
(and so guarantees that all bids will combine feasibly).

We have implemented several plug-in versions to build RFQs in order to test alternative ap-
proaches. We are currently studying how to apply Expected Utility Theory to the generation
of RFQs [2].

3. At the conclusion of the bidding cycle, the agent must decide which bids to award, and exactly
how to schedule the tasks in the bid awarded.

The winner determination problem for combinatorial auctions has been shown to be NP-
complete and inapproximable [29]. This result clearly applies to the MAGNET winner deter-
mination problem, since we simply apply an additional set of (temporal) constraints to the
basic combinatorial auction problem, and we cannot use the “free disposal assumption” which
states that unsold goods can be disposed of freely. Because there can be no polynomial-time
solution, nor even a polynomial-time bounded approximation, we must accept exponential
complexity. We will see later in Section 5.2 that we can determine probability distributions
for search time, based on problem size metrics, and we can use those empirically-determined
distributions in our deliberation scheduling process. More details on this are in [7].

The Bid Evaluator contains a search engine that takes a task network and a set of bids,
and finds an optimal or near-optimal mapping of tasks to bids, respecting the temporal
constraints. We have implemented the following bid-evaluation search engines: a highly-
modular simulated annealing version [9], a Mixed Integer Programming version [6], and a A*
and IDA* versions that extend Sandholm’s bidtree-based IDA* algorithm [30] to deal with
reverse-auction problems having precedence constraints among items.

To study bid evaluation, we are able to control a wide range of conditions, including:

• Composition of the generated plans: number of tasks, task types (which in turn controls
duration variability and probability of bids), and the density of the precedence network;

• structure of the RFQ: whether it covers the whole plan, amount of slack in the schedule,
and the degree to which bids are allowed to violate precedence relations;

• number and size of bids, composition of bids: random selections, contiguous task sets,
role-based task sets;

• type of search used, search parameters;
• bid selectors and evaluators, evaluation parameters.
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5 The MAGNET Testbed

Our current implementation of MAGNET includes a fully implemented and customizable customer
agent, described in the previous Section, some relatively simple supplier agents, and a prototype
of the market server. The testbed supports a number of measurements for evaluating search per-
formance, including search effort, anytime performance, and solution quality, along with counts of
solved, unsolved, and known unsolvable problems encountered. Output can be processed into a
form that can be used by a standard spreadsheet, or Matlab in the case of anytime performance
data.

5.1 Supplier Agents

Supplier Agents have been designed recently and are still under development. They are being
implemented using Avalon [22] and are based on components. Using Avalon, it is straightforward
to have the components of the supplier agent interact, to instantiate different instances of the
components, and to reuse code. Avalon allows also to switch components on the fly, which is
very useful in testing. It is also possible to configure Avalon using XML files, which specify which
components and which instances have to be included.

Since our primary interest has been in the workings of the Customer agent, we have also
implemented simple minded Supplier, that simply receive RFQs, and respond by submitting bids.
They do not maintain resource schedules, and they have no persistent identity. The basic structure
is shown in Figure 5. Each of these three layers is implemented as an abstraction with multiple
implementations.

Bid-Set
Generator

Bid
Generator

Task-Bid
Generator

Bids

Task-Bids

RFQ Bid Sets

Figure 5: Simple Supplier Simulation

A Bid-Set Generator generates sets of bids and returns them to the Customer agent. Example
Bid-Set Generators include one that always bids on certain task types if they are present in the
RFQ, one that generates a random set of bids, and one that extends the random set generator by
attempting to generate a set that covers all tasks in the RFQ.

A Bid Generator generates a single bid, possibly containing multiple individual task-bids. The
average sizes, and the degree of size variability, of the bids produced are determined by configuration
parameters, and in some cases by the structure of the plan and the type of Bid Generator selected.
We have implemented Bid generators that can generate bids for certain types of tasks, random
collections of tasks, or sets of tasks that are connected by precedence relations.
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A Task-Bid Generator produces a bid for a single task. The bid specifies the task to be per-
formed, the expected duration of the task, and early start and late finish time window data. In
most cases it must also assign a cost to the task, which the Bid Generator will use in composing the
overall cost for the bid. The duration and cost are selected from random distributions specified in
the task-type description. The early-start and late-finish times are also randomly generated from
the resource-availability data in the task-type description. The constraints on the time window for
the Task-Bid come from two sources: (1) the time window specified in the RFQ, and (2) the times
already specified in other Task-Bids for tasks that are immediate predecessors or successors of the
current task. If the Task-Bid generator cannot fit the requested task into the time window, it fails
to produce a result, and the bid will not include that particular task.

5.2 Experimental Studies

Our goal is to develop a sufficiently realistic simulation of an actual market to support evaluation
of MAGNET agent performance.

As an example of the type of analysis we plan to undertake, we report preliminary results on
characterizing the performance of a winner determination algorithm based on Integer Programming
(IP). The study follows the methodology outlined in [16].

We are interested in three measures of performance: speed, scalability, and predictability. Speed
and scalability are important because combinatorial auction winner determination is known to be
NP-complete and inapproximable [30]. Predictability is critical in the MAGNET domain because
of the need to allocate time to the winner-determination process before issuing an RFQ. This
is because suppliers need to know when bids will be awarded so they can calculate the cost of
provisional resource reservations to cover their outstanding bids. This means that the RFQ must
specify the timeline for the bidding process, and that timeline must include the time allocated to
winner determination.

We address the predictability issue by characterizing our winner determination methods with
respect to factors that can be measured or estimated at the time the RFQ is issued. These include
(1) number of tasks in the task network, (2) number of bids likely to be submitted, and (3) expected
sizes of the submitted bids, i.e. the number of tasks per bid. Although the latter two factors cannot
be directly measured, they can be estimated based on historical market data.

Figure 6 shows the complete runtime distributions for four problem sets as the size of the task
network is varied. For each curve, we show actual observations along with a lognormal distribution
that minimizes the χ2 metric1. Typical χ2 values range from 0.3 to 3.0 for 9 degrees of freedom,
a good match. Note that the first parameter of the lognormal distribution is equal to the median
value, which is significantly smaller than the mean for all sets. The value of data such as this is
that we can now make decisions about time allocation with a specific degree of confidence. For
example, we can say that for a problem the size of our 35-task, 123-bid sample, we have a 95%
confidence in finding a solution using the IP solver in less than 5.6 seconds.

We have generated similar data that allow us to infer probability distributions for a problem set
in which the bid count is varied over a 3:1 range, with the size of the task network held constant
at 20 tasks, and for another set in which the sizes of bids is varied over a 5:1 range. Again, we

1The χ
2 metric is determined by dividing the inferred density function into a number of equal areas, and counting

the number of observations that fall into each of those zones. The χ
2 value is the mean square deviation from a

“perfect fit”.
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Figure 6: Observed and inferred runtime distributions for the IP solver across a range of task count
values, with a nearly constant ratio of bids to tasks.

have found good correspondence (0.2 < χ2 < 3.0, 9 dof) between the measured data and inferred
lognormal distributions.

We now have the necessary data to estimate the time that must be allocated to the winner
determination process using the IP solver. The process is to choose a desired “probability of
success”, and then to estimate parameters for a function that reasonably matches the inferred
distributions at that level of probability. More details are in [7].

6 Design Principles and Implementation of the Testbed

The previous sections described the design of MAGNET and of the agents. This section deals with
the overall system architecture and the implementation of the market infrastructure.

6.1 Design Principles

In order to maximize the usefulness of the MAGNET testbed as a research tool, we have adopted
several design principles that make it easy to plug together and reconfigure, and that enhance its
transparency. Examples are:

1. The system is written in Java, and has been tested on multiple platforms.
2. The system is organized into a set of components, and a set of systems that can be constructed

from various subsets of components. Each system is constructed to serve a particular exper-
imental purpose.

3. All the major behavioral modules are written as abstract classes, with (at least potentially)
multiple implementations that can be “plugged in” to implement a particular behavioral
variant.

4. Virtually every feature of the system is selectable and configurable from a configuration file,
and many of them can be viewed and changed from a user interface. This includes the choice
of behavioral plug-ins.
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5. The interface between the agents and the Market is also abstracted. This allows connection
with multiple types of markets (such as one that looks up price and availability info from a
catalog or timetable) and through multiple communications protocols.

6. Much of the activity of the agent is agenda-driven, and development and maintenance of the
agenda is an important activity in its own right. Agenda items can select plug-ins, update
configuration details, evaluate options, interact with the market or other agents, update the
agenda, and record results.

7. A pervasive logging and data collection system allows for both detailed examination of behav-
ior and the generation of experimental data. The level of logging detail may be independently
configured for different modules, and the various logging levels have well-defined meanings.

The system in its current form is useful for several types of studies. Recent work includes
experiments with bid evaluation performance, and studies of the RFQ composition problem. Our
longer-term goal is to support studies of mixed-initiative decision making with experienced human
users in realistic market simulations.

6.2 Architectural Design

We use Web-based technology for the market infrastructure. In particular, the server is implemented
in Enterprise JavaBeans [12], and we use Apache SOAP for communication between agents and
the server.

The architectural style we selected for MAGNET is based on Web services and messaging. We
expect MAGNET components to require both synchronous and asynchronous communications, so
the ability to combine the Web Services architectural style with messaging is important.

From the architecture point of view, an agent is modeled as a service requester, requesting some
service from a provider, which in MAGNET is an interface to the market. The agent has the choice
to use a web-based synchronous approach based on HTTP, or a message based approach using
SMTP e-mail. Once the agent chooses the service and makes the request, it will receive a reply,
either synchronously or asynchronously depending on the service selected.

A Customer agent interacts with the market as a SOAP service requester. The requester’s API
contains separate classes that act as SOAP service requesters for each of the SOAP services avail-
able. The services include finding available markets in MAGNET, an ontology service, submitting
the RFQs, and awarding bids to suppliers. We will soon add execution monitoring services to
monitor task execution. A Supplier agent interacts in a similar way, using services such as supplier
registration and bid submission.

The MAGNET market exists as an Enterprise JavaBean (EJB) and interacts with customer and
supplier agents through the use of the SOAP services described earlier. Market sessions exist also
as EJBs and are created and accessed through the use of market-related SOAP services. Session
persistence is addressed through the use of entity beans, which are persistent as needed through the
use of an application server’s database. Session related EJBs are used by the RFQ, bid submission,
and bid award SOAP services.

The customer agent and supporting infrastructure have been released as open source at
http://www.openchannelsoftware.com/projects/MAGNET.
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7 An Example

As an example, let’s imagine that a small winery needs to bottle wine and ship it2. Figure 7 shows
a plan to complete the bottling process. The plan is complicated by a couple of factors. If bottling
is done in spring, which is the peak season for bottling, often there is a shortage of supplies, such
as wine bottles, wine filters, and corks, and there is a shortage of equipment, such as bottling
and corking machines. If the wine is going to be sold immediately, then labels and cases have
to be created. Each winery uses distinctive labels and cases. Experience also shows that around
Christmas wine cases are in short supply, and that shipping resources are over booked.

There are other complicating factors, such as the fact that different types of wine (white or red)
require different types of bottles, and that some wine bottles require special corks.

In our example, let’s assume that bottling is done in spring. This means there is a shortage
of supplies and equipment. Since the bottled wine has to be sold immediately, the deadline for
shipping is short.

Buy bottles

Buy cork

Create labels

Buy cases

E
nd

Print cases

Lease labeling equipment

Lease bottling equipment

Pack and ship wine

B
eg

in

Figure 7: Plan for bottling wine

The first task for the Customer agent is to plan for all the tasks needed to accomplish the goal
of bottling and shipping wine. The plan is expressed as a task network, such as the one shown in
Figure 7. The task network is generated by the component of the Customer agent which is labeled
Planner in Figure 3.

The task network is then passed to the Bid Manager. The Bid Manager is responsible for
ensuring that resources are assigned to each of the tasks, that the assignments taken together form
a feasible schedule, and that the cost and risk of executing the plan is minimized. This cost must
also be less than the value of the goal at the time the goal is reached.

When the Bid Manager is invoked, some tasks may already be assigned. This can occur because
the Execution Manager may use the Bid Manager to repair a partially-completed plan in which
previously determined assignments have failed, because the agent will perform some of the tasks
itself, or because bidding is being carried out in multiple stages. For example, the customer may
be able to create the labels for the bottles, and so it might not contract for that task.

Before bids can be solicited in the market, an RFQ must be composed. The RFQ is a structure
that contains some portion of the plan data (tasks and precedence relations) along with a set of
scheduling constraints. To compose the RFQ the Bid Manager needs not only to know what tasks
should be specified in the RFQ, but also decide when each task should be scheduled and how much
flexibility to allow in the schedule.

2The example is taken from the operations of the “Weingut W. Ketter” winery, Kröv, Germany.
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In our winery example, we would find out from the market that bottling resources are thin.
The Bid Manager might decide to wait until the bottling is under way before ordering the labels.
However, this choice is possible only if the wine does not need to be shipped immediately.

Dividing the bidding process into multiple phases can be an important strategy to reduce the
level of uncertainty. For example, we might not want to take bids on the labeling equipment until
we have firm dates for the bottles and corks.

Figure 8 shows two alternative ways to schedule and compose the RFQs for our winery project.
In version A, we believe we have 5 weeks to finish our task, and the scarce resources are bottling
and labeling equipment. Therefore, we allow a week and a half for the one-week bottling job. Since
time windows do not overlap, we are guaranteed that if we receive bids on all tasks, they can be
combined feasibly. In version B, we are interested in shipping the bottled wine as soon as possible.
Therefore, we bid out the bottling equipment and the supplies first in RFQ B1, and we bid out the
remainder of the tasks, labeling and pack/shipping, in RFQ B2 after we received and accepted a
bid that finishes the labels by the end of week 1. Splitting the RFQ gives us the opportunity to
reduce the overall duration for the tasks, and to get done in 4 weeks instead of 5 weeks.

Buy bottles

Buy cork

Create labels

540 1 2 3

Buy cases

Print cases Pack and ship wine

A.

week

Lease bottling equipment

Lease label equipment

540 1 2 3

Buy bottles

Buy cork

Lease bottling equipment

Buy cases

Create labels

Print cases

week

B1.

540 1 2 3

B2.

Pack and ship wine

week

Lease label equipment

Figure 8: RFQ Example. A shows a single RFQ, B1 and B2 are two separate RFQs for the same
tasks, with different time windows

Figure 9 shows yet another way to decompose the RFQ in two parts with larger time windows
and greater overlap between them. The tasks are divided between the two RFQs differently and
there is a much larger overlap of the time windows. This gives more flexibility to the suppliers, but
makes it harder to combine the bids into a feasible schedule, which respects all the precedence con-
straints. Clearly, deciding whether to split RFQs and how to split them is, by itself, a complicated
problem.

Once bids have been submitted, it is up to the Bid Evaluator to evaluate them and decide
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Print cases

B1.

Pack and ship wine
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Buy cases

Figure 9: A different partitioning of tasks in two RFQs. The total completion time is the same,
but some time windows are different.

which ones to accept (if any). The Bid Evaluator includes a search engine that, given a task
network and a set of bids, attempts to find an optimal or near-optimal mapping of bids to tasks,
respecting temporal constraints. This includes solving an extended version of the combinatorial
auction winner-determination problem [1, 29].

Figure 10 shows a very small example of the problem the Bid Evaluator must solve. We
composed the RFQ with a large overlap between the labeling and bottling tasks, perhaps because
we believed there would be large numbers of bidders with a wide variation in lead times.

Bid 2 indicates bottling could start late in week 2, would take a week, and the supplier was
willing to shift that out 2 more days to accommodate our schedule. Bid 3 shows that labeling could
start through week 2, would take a eek, and needs to finish mid of week 3. Clearly these two bids
cannot be combined, since labeling must at least finish when bottling finishes or later, but cannot
finish before bottling is finished. Bid 4 shows a more expensive bottling task which could start
earlier, and also needs a week to finish. This can be combined with Bid 3, with one day slack to
accommodate contingencies. Bid 5 gives us a large enough time window for the labeling task to be
combined with Bid 4 but not with Bid 2. Bid 6 shows one special characteristic of the MAGNET
system. One supplier can bid for multiple tasks in one bid, even if the RFQ specified those tasks
separately. In this example this proves to be cheaper but not very efficient time-wise. The supplier
offers to do the two tasks cheaper then others do, but the start time is later. Bid 3 has a lower
cost, but it leaves no time for the successive labeling task, and so it cannot be accepted. The best
combination for an early finish is Bid 1, Bid 4, Bid 5 and Bid 7. This combination finishes at the
end of the second day of week 3, which means it finishes one week and three days earlier than
originally specified in the RFQ. The cost is 3000. If saving money is more important than finishing
earlier, Bid 1, Bid 6, and Bid 7 will be selected, for a total cost of 2895.
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Figure 10: Bid Example

8 Related Work

Markets play an essential role in the economy, and market-based architectures are a popular choice
for multiple agents (see, for instance, [3, 34, 38, 35, 19, 4]). Most market architectures limit the
interactions of agents to manual negotiations, direct agent-to-agent negotiation [32, 11], or various
types of auctions [39].

Existing architectures for multi-agent virtual markets typically rely on the agents themselves
to manage the details of the interaction between them, rather than providing explicit facilities
and infrastructure for managing multiple negotiation protocols. In our work, agents interact with
each other through a market. The market infrastructure provides a common vocabulary, collects
statistical information that helps agents estimate costs, schedules, and risks, and acts as a trusted
intermediary during the negotiation process.

Auctions are becoming the predominant mechanism for agent-mediated electronic commerce [15].
The Fishmarket [27], AuctionBot [39], and eMEDIATOR [29] are examples of multi-agent auction
systems. The determination of winners of combinatorial auctions [23] is hard. Methods for improv-
ing the efficiency of combinatorial auctions have been developed in the last few years, among others,
by Sandholm [29] and Fujishima [13]. Mixed integer programming has been demonstrated to work
extremely well even on large problems by Andersson [1]. We have demonstrated how to use Integer
Programming within the constraints posed by our formulation of the problems in MAGNET [6].

Several systems have attempted to organize task-oriented work among multiple agents. Parkes [25]
describes an auction-based system for controlling access to shared railroad resources. It uses a
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mixed-integer approach, with many domain-specific optimizations. In [17] combinatorial auctions
are used for the initial commitment decision problem, which is the problem an agent has to solve
when deciding whether to join a proposed collaboration. Their tasks have precedence and hard
temporal constraints. However, to reduce search effort, they use domain-specific roles, a shorthand
notation for collections of tasks. In their formulation, each task type can be associated with only a
single role. MAGNET agents are self-interested, and there are no limits to the types of tasks they
can decide to do. In [14] scheduling decisions are made not by the agents, but instead by a central
authority. The central authority has insight to the states and schedules of participating agents,
and agents rely on the authority for supporting their decisions.

9 Conclusions and Future Work

The MAGNET automated contracting environment is designed to support negotiation among mul-
tiple, heterogeneous, self-interested agents over the distributed execution of complex tasks. The
MAGNET testbed is a prototype implementation of a Customer agent, a market server, and a pop-
ulation of Supplier agents. It is highly configurable and extensible, and has been used for several
statistical studies aimed at understanding the decision processes for a Customer agent.

The current system has proven to be very useful for the types of statistical studies we have
pursued so far. Future plans call for more focus on mixed-initiative interaction, and our current
user interface is too primitive to support that work.

A major need in this area of research is the establishment of a set of benchmark problems by
which different strategies can be compared. Leyton-Brown et al [21] have proposed a test suite called
CATS for testing combinatorial auction systems. It solves part of the problem, but it only deals
with bids, not the RFQ, and it does not handle the precedence relations and temporal constraints
needed in the MAGNET environment.
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