
MAGNET: A Multi-Agent System using

Auctions with Temporal and Precedence

Constraints⋆

John Collins and Maria Gini

Department of Computer Science and Engineering
University of Minnesota

{jcollins,gini}@cs.umn.edu

Abstract. We consider the problem of rational, self-interested, eco-
nomic agents who must negotiate with each other in order to carry out
their plans. Customer agents express their plans in the form of task
networks with temporal and precedence constraints. The market runs
a combinatorial reverse auction, in which supplier agents submit bids
specifying prices for combinations of tasks, along with time windows and
duration data that the customer may use to compose a work schedule.
The presence of temporal and precedence constraints among the items at
auction requires extensions to the standard winner-determination proce-
dures for combinatorial auctions, and the use of the enhanced winner-
determination procedure within the context of a real-time negotiation
requires that we predict its runtime when planning the negotiation pro-
cess.

We address two specific issues related to this problem. The first is the
need for a market infrastructure to support decision processes. We pro-
pose a set of requirements for a market that can support this type of
negotiation, and describe an architecture that can meet these require-
ments. We also describe the high-level design of an agent that can act as
a customer in this environment, and discuss the decision behaviors such
an agent must implement to maximize its utility. The second issue we
consider is the determination of auction winners. We explore and char-
acterize a winner determination method, which is an extension of the
bidtree-based Iterative-Deepening A* (IDA*) formulation proposed by
Sandholm.

1 Introduction

We believe that much of the commercial potential of the Internet will remain
unrealized until a new generation of autonomous systems is developed and de-
ployed. A major problem is that the global connectivity and rapid communica-
tion capabilities of the Internet can present an organization with vast numbers

⋆ Work supported in part by the National Science Foundation under grants IIS-
0084202 and IIS-0414466

of new opportunities, to the point that users are overwhelmed, and conventional
automation is insufficient.

Much has been done to enable simple buying and selling over the Internet,
and systems exist to help customers and suppliers find each other, such as search
engines, vertical industry portals, personalization systems, and recommender
engines. However, many business operations are much more complex than the
simple buying and selling of individual items. We are interested in situations
that require coordinated combinations of goods and services, where there is
often some sort of constraint-satisfaction or combinatorial optimization problem
that needs to be solved in order to assemble a “deal.” Commonly, these extra
complications are related to constraints among task and services, and to time
limitations. The combinatorics of such situations are not a major problem when
an organization is working with small numbers of partners, but can easily become
nearly insurmountable when “opened up” to the public Internet.

We envision a new generation of systems that will help organizations and
individuals find and exploit opportunities that are otherwise inaccessible or too
complex to seriously evaluate. These systems will help potential partners find
each other (matchmaking), negotiate mutually beneficial deals (negotiation, eval-
uation, commitment), and help them monitor the progress of distributed activ-
ities (monitoring, dispute resolution). They will operate with variable levels of
autonomy, allowing users to delegate or reserve authority as needed, and they
will provide users with a market presence and power that is far beyond what is
currently achievable with today’s telephone, fax, web, and email-based methods.
We believe that an important negotiation paradigm among these systems will
be market-based combinatorial auctions, with added precedence and temporal
constraints.

The Multi-AGent NEgotiation Testbed (MAGNET) project represents a first
step in bringing this vision to reality. MAGNET provides a unique capability
that allows self-interested agents to negotiate over complex coordinated tasks,
with precedence and time constraints, in an auction-based market environment.
This paper introduces many of the problems a customer agent must solve in the
MAGNET environment, explores in detail the problem of solving the extended
combinatorial-auction winner determination problem.

This paper is organized as follows. Section 2 works through a complete in-
teraction scenario with an example problem, describing each of the decision
processes a customer agent must implement in order to maximize the expected
utility of its principal. Section 3 focuses on one specific decision problem, that of
deciding the winners in a MAGNET auction. We describe an optimal tree search
formulation algorithm for this problem. Section 4 briefly describes the results of
experiments that characterize the performance of our search algorithm. This is
important because it is a difficult combinatorial problem, and the negotiation
process requires that time be allocated to it before the details of the problem
can be known. Section 5 places this work in context with other work in the field.
Finally, Section 6 wraps up the discussion and points out a set of additional
research topics that must be addressed to further realize the MAGNET vision.

2 Decision processes in a MAGNET customer agent

We focus on negotiation scenarios in which the object of the interaction is to gain
agreement on the performance of a set of coordinated tasks that one of the agents
desires to complete in order to maximize its own utility. We assume that self-
interested agents will cooperate in such a scheme to the extent that they believe
it will be profitable for them to do so. After a brief high-level overview of the
MAGNET system, we focus on the decision processes that must be implemented
by an agent that acts as a customer in the MAGNET environment. We intend
that our agents exhibit rational economic behavior. In other words, the agent
should always act to maximize the expected utility of its principal.

We will use an example to work through the agent’s decisions. Imagine that
you own a small vineyard, and that you need to get last autumn’s batch of wine
bottled and shipped1. During the peak bottling season, there is often a shortage
of supplies and equipment, and your small operation must lease the equipment
and bring on seasonal labor to complete the process. If the wine is to be sold
immediately, then labels and cases must also be procured, and shipping resources
must be booked. Experience shows that during the Christmas season, wine cases
are often in short supply and shipping resources are overbooked.

2.1 Agents and their environment

Agents may fulfill one or both of two roles with respect to the overall MAG-
NET architecture, as shown in Figure 1. A Customer agent pursues its goals by
formulating and presenting Requests for Quotations (RFQs) to Supplier agents

through a market infrastructure [1]. An RFQ specifies a task network that in-
cludes task descriptions, a precedence network, and temporal constraints that
limit task start and completion times. Customer agents attempt to satisfy their
goals for the greatest expected profit, and so they will accept bids at the least
net cost, where cost factors can include not only bid prices, but also goal comple-
tion time, risk factors, and possibly other factors, such as preferences for specific
suppliers. More precisely, these agents are attempting to maximize the utility
function of some user, as discussed in detail in [2].

A supplier agent attempts to maximize the value of the resources under its
control by submitting bids in response to RFQs. A bid specifies what tasks the
supplier is able to undertake, when it is available to perform those tasks, how
long they will take to complete, and a price. Each bid may specify one or more
tasks. Suppliers may submit multiple bids to specify different combinations of
tasks, or possibly different time constraints with different prices. For example, a
supplier might specify a short duration for some task that requires use of high
cost overtime labor, as well as a longer duration at a lower cost using straight-
time labor. MAGNET currently supports simple disjunction semantics for bids
from the same supplier. This means that if a supplier submits multiple bids, any
non-conflicting subset can be accepted. Other bid semantics are possible [3, 4].
1 This example is taken from the operations of the Weingut W. Ketter winery, Kröv,

Germany.

Supplier Agent

Assignment
Task

Commitments

Customer Agent

Planner Market

Availability

Re−Bid

Bid

Protocol
Bid

Statistics

Model
Domain

Network
Task

Session
Market

Statistics
Market

Ontology
Market

Goal
Top−Level

Events &

Model
Domain

Responses
Events &

Protocol

Manager
Resource

Manager
Bid

Manager
Execution

Manager
Bid

Re−Plan

Responses

Fig. 1. The MAGNET architecture

2.2 Planning

A transaction (or possibly a series of transactions) starts when the agent or its
principal acquires a goal that must be satisfied, or an opportunity arises that,
if satisfied, would likely yield a positive payoff. Attributes of the goal might
include a payoff and a deadline, or a payoff function that varies over time, either
according to a discount rate or some other function.

While it would certainly be possible to integrate a general-purpose planning
capability into a MAGNET agent, we expect that in many realistic situations the
principal will already have a plan, perhaps based on standard industry practices.
Figure 2 shows such a plan, for our winery bottling operation. We shall use this
plan to illustrate the decision processes the agent must perform (or provide
assistance to its principal in performing).

be
gi

n

de
ad

lin
eBottle wine

Apply labels

Deliver bottles

Deliver cork

Print cases

Print labels

Deliver cases Pack cases Ship cases

Fig. 2. Plan for the wine-bottling example.

Formally, we define a plan P = (S,V) as a task network containing a set of
tasks S, and a set of precedence relations V . A precedence relation relates two
tasks s, s′ ∈ S as s ≺ s′, interpreted as “task s must be completed before task
s′ can start.”

We assume that markets will be sponsored by trade associations and com-
mercial entities, and will therefore be more or less specialized. A consequence of
this is that agents must in general deal in multiple markets to accomplish their
goals. For our example, we assume that the tasks in our plan are associated with
markets as specified in Table 1.

Table 1. Tasks and market associations for the wine-bottling example

Task Description Market

s1 Deliver bottles Vineyard Services

s2 Deliver cork Vineyard Services

s3 Bottle wine Vineyard Services

s4 Print labels Printing & Graphic Arts

s5 Apply labels Vineyard Services

s6 Print cases Vineyard Services

s7 Deliver cases Vineyard Services

s8 Pack cases (none)

s9 Ship cases Transport Services

It appears that we will need to deal with 3 different markets, and we will pack
the cases ourselves. Or perhaps we’ll open a few bottles and invite the village to
help out.

So far, our plan is not situated in time, and we have not discussed our ex-
pected payoff for completing this plan. In the wine business, the quality of the
product depends strongly on time. The wine must be removed from the casks
within a 2-week window, and the bottling must be done immediately. For some
varieties, the price we can get for our wine is higher if we can ship earlier, given
a certain quality level. All the small vineyards in the region are on roughly the
same schedule, so competition for resources during the prime bottling period can
be intense. Without specifying the exact functions, we assume that the payoff
drops off dramatically if we miss the 2-week bottling window, and less dramati-
cally as the shipment date recedes into the future.

This example is admittedly a bid contrived, and it is important not to stretch
it too far. We are treating the bottling and labeling operations as atomic – the
entire bottling operation must be finished before we can start labeling – even
though common-sense would inform us that you would probably want to apply
this constraint at the per-bottle level, not the per-batch level. On the other hand,
some varieties of wine are aged in the bottles for 6 months or more before the
labels are applied.

2.3 Planning the bidding process

At this point, the agent has a plan, and it knows which markets it must deal
in to complete the plan, the value of completing the plan, and how that value

depends on time. The next step is to decide how best to use the markets to
maximize its utility. It will do this in two phases. First, the agent generates an
overall plan for the bidding process, which may involve multiple RFQs in each
of multiple markets. We call this a “bid-process plan”. Then a detailed timeline
is generated for each RFQ.

The simplest bid-process plan would be to issue a single RFQ in each market,
each consisting of the portion of the plan that is relevant to its respective market.
If all RFQs are issued simultaneously, and if they are all on the same timeline,
then we can combine their bids and solve the combined winner-determination
problem in a single step. However, this might not be the optimum strategy. For
example:

– We may not have space available to store the cases if we are not ready to
pack them when they arrive.

– Our labor costs might be much lower if we can label as we bottle; otherwise,
we will need to move the bottles into storage as we bottle, then take them
back out to label them.

– Once cases are packed, it is easy for us to store them for a short period.
This means that we can allow some slack between the packing and shipping
tasks.

– There is a limit to what we are willing to pay to bottle our wine, and there is
a limit to the premium we are willing to pay to have the bottling completed
earlier.

The agent can represent these issues as additional constraints on the plan, or
in some cases as alternative plan components. For example, we could constrain
the interval between s5 (labeling) and s8 (packing) to a maximum of one day, or
we could add an additional storage task between s3 (bottling) and s5 that must
be performed just in case there is a non-zero delay between the end of s3 and
the start of s5.

There are many possible alternative actions that the agent can take to deal
with these issues. It need not issue RFQs in all markets simultaneously. It need
not include all tasks for a given market in a single RFQ. Indeed, dividing the plan
into multiple RFQs can be an important way to reduce scheduling uncertainty.
For example, we might want to have a firm completion date for the bottling and
labeling steps before we order the cases.

Market statistics can be used to support these decisions. For example, if we
knew that resources were readily available for the steps up through the labeling
process (tasks s1 . . . s5), we could include the case delivery and printing steps
(tasks s6 and s7) in the same RFQ. This could be advantageous if suppliers were
more likely to bid or likely to bid lower prices if they could bid on more of the
business in a single interaction. In other words, some suppliers might be willing
to offer a discount if we agree to purchase both bottles and cases from them,
but if we negotiate these two steps in separate RFQs, we eliminate the ability
to find out about such discounts.

We should note that suppliers can either help or hinder the customer in
this process, depending on the supplier’s motivations. For example, the supplier

can help the customer mitigate issues like the constraint between bottling and
packing. For example, if a supplier knew about this constraint, it could offer both
tasks at appropriate times, or it could give the customer the needed scheduling
flexibility by offering the case delivery over a broad time window or with multiple
bids with a range of time windows. In some domains this could result in higher
costs, due to the large speculative resource reservations the supplier would have
to commit to in order to support its bids. On the other hand, if a supplier saw an
RFQ consisting of s6 and s7, it would know that the customer had likely already
made commitments for the earlier tasks, since nobody wants cases printed if they
aren’t bottling. If the supplier also knew that there would be little competition
within the customer’s specified time window, it could inflate its prices, knowing
that the customer would have little choice.

The bid-process plan that results from this decision process is a network of
negotiation tasks and decision points. Figure 3 shows a possible bid-process plan
for our wine-bottling example.

no

yes

Tasks: s6 . . . s7

Market: Vineyard Services

RFQ: r1

RFQ: r3

Tasks: s1 . . . s5

Market: Vineyard Services

finish

Tasks: s9

Market: Transport Services
RFQ: r4

alert useracceptable?

Tasks: s4

Market: Printing & Graphic Arts
RFQ: r2

start

Fig. 3. Bid-process plan for the wine-bottling example.

Once we have a bid-process plan, we know what markets we will enter, and
how we want to divide up the bidding process. We must then schedule the bid-
process plan, and allocate time within each RFQ/bidding interaction. These
two scheduling problems may need to be solved together if the bid-process plan
contains multiple steps and it is important to finish it in minimum time. Each
RFQ step needs to start at a particular time, or when a particular event occurs
or some condition becomes true. For example, if the rules of the market require

deposits to be paid when bids are awarded, the customer may be motivated to
move RFQ steps as late as possible, other factors being equal. On the other hand,
if resources such as our bottling and labeling steps are expected to be in short
supply, the agent may wish to gain commitments for them as early as possible in
order to optimize its own schedule and payoff. We assume these decisions can be
supported by market statistics, the agent’s own experience, and/or the agent’s
principal.

Each RFQ must also be allocated enough time to cover the necessary deliber-
ation processes on both the customer and supplier sides. Some of these processes
may be automated, and some may involve user interaction. The timeline in Fig-
ure 4 shows an abstract view of the progress of a single negotiation. At the
beginning of the process, the customer agent must allocate deliberation time
to itself to compose its RFQ2, to the supplier for bid preparation, and to itself
again for the bid evaluation process. Two of these time points, the bid deadline
and the bid award deadline, must be communicated to suppliers as part of the
RFQ. The bid deadline is the latest time a supplier may submit a bid, and the
bid award deadline is the earliest time a supplier may expire a bid. The interval
between these two time points is available to the customer to determine the
winners of the auction.

S
en

d
R

F
Q

B
id

 d
ea

dl
in

e

B
id

 A
w

ar
d

de
ad

lin
e

ta
sk

 e
xe

cu
tio

n
E

ar
lie

st
 s

ta
rt

 o
f

P
la

n
co

m
pl

et
io

n

C
om

po
se

 R
F

Q

Customer deliberates

Supplier deliberates

Fig. 4. Typical timeline for a single RFQ

In general, it is expected that bid prices will be lower if suppliers have more
time to prepare bids, and more time and schedule flexibility in the execution
phase. Minimizing the delay between the bid deadline and the award deadline will
also minimize the supplier’s opportunity cost, and would therefore be expected
to reduce bid prices. On the other hand, the customer’s ability to find a good
set of bids is dependent on the time allocated to bid evaluation, and if a user
is making the final decision on bid awards, she may want to run multiple bid-
evaluation cycles with some additional think time. We are interested in the
performance of the winner determination process precisely because it takes place

2 This may be a significant combinatorial problem – see for example [5].

within a window of time that must be determined ahead of time, before bids are
received, and because we expect better overall results, in terms of maximizing the
agent’s utility, if we can maximize the amount of time available to suppliers while
minimizing the time required for customer deliberation. These time intervals can
be overlapped to some extent, but doing so can create opportunities for strategic
manipulation of the customer by the suppliers, as discussed in [6].

The process for setting these time intervals could be handled as a non-linear
optimization problem, although it may be necessary to settle for an approx-
imation. This could consist of estimating the minimum time required for the
customer’s processes, and allocating the remainder of the available time to the
suppliers, up to some reasonable limit.

2.4 Composing a request for quotes

At this point in the agent’s decision process, we have the information needed to
compose one or more RFQs, we know when to submit them, and we presumably
know what to do if they fail (if we fail to receive a bid set that covers all the task
in the RFQ, for example). The next step is to set the time windows for tasks in
the individual RFQs, and submit them to their respective markets.

Formally, an RFQ r = (Sr,Vr,Wr, τ) contains a subset Sr of the tasks in
the task network P, with their precedence relations Vr, the task time windows
Wr specifying constraints on when each task may be started and completed,
and the RFQ timeline τ containing at least the bid deadline and bid award
deadline. As pointed out earlier, there might be elements of the task network
P that are not included in the RFQ. For each task s ∈ Sr in the RFQ the
bid manager must specify a time window w ∈ Wr, consisting of an earliest
start time tes(s, r) and a latest finish time tlf (s, r), and a set of precedence
relationships Vr = {for each s, s′ ∈ Sr, s

′ ≺ s}, associating s with each of the
other tasks s′ ∈ Sr whose completion must precede the start of s.

The principal outcome of the RFQ-generation process is a set of values for
the early-start and late-finish times for the time windows Wr in the RFQ. We
obtain a crude first approximation using the Critical Path (CPM) algorithm [7],
after making some assumptions about the durations of tasks, and about the
earliest start time for tasks that have no predecessors in the RFQ (the root tasks

SR) and the latest finish times for tasks that have no successors in the RFQ
(the leaf tasks SL). Market mean-duration statistics can be used for the task
durations. Overall start and finish times for the tasks in the RFQ may come
from the bid-process plan, or we may already have commitments that constrain
them as a result of other activities. For this discussion, we assume a continuous-
time domain, although we realize that many real domains effectively work on
a discrete-time basis. Indeed, it is very likely that some of our wine bottling
activities would typically be quoted in whole-day increments. We also ignore
calendar issues such as overtime/straight time, weekends, holidays, time zones,
etc.

The critical path algorithm walks the directed graph of tasks and precedence
constraints, forward from the early-start times of the root tasks to compute the

earliest start tes(s) and finish tef (s) times for each task s ∈ Sr, and then back-
ward from the late-finish times of the leaf tasks to compute the latest finish tlf (s)
and start tls(s) times for each task. The minimum duration of the entire task
network specified by the RFQ, defined as maxs′∈SL

(tef (s
′)) − mins∈SR

(tes(s)),
is called the makespan of the task network. The smallest slack in any leaf task
mins∈SL

(tlf (s) − tef (s)) is called the total slack of the task network within the
RFQ. All tasks s for which tlf (s) − tef (s) = total-slack are called critical tasks.
Paths in the graph through critical tasks are called critical paths.

Some situations will be more complex than this. This can happen when there
are constraints that are not captured in the precedence network of the RFQ. For
example, some non-leaf task may have successors that are already committed but
are outside the RFQ. The CPM algorithm is still applicable, but the definition
of critical tasks and critical paths becomes more complex.

Figure 5 shows the result of running the CPM algorithm on the tasks of
RFQ r1 from our bid-process plan. We are assuming task durations as given
in the individual “task boxes.” We observe several problems immediately. The
most obvious is that it is likely that many bids returned in response to this RFQ
would conflict with one another because they would fail to combine feasibly. For
example, if I had a bid for the label printing task s5 for days 5-7, then the only
bids I could accept for the labeling task s4 would be those that had a late start
time at least as late as day 7. If the bids for s4 were evenly distributed across the
indicated time windows, and if all of them specified the same 4-day duration,
then only 1/3 of those bids could be considered. In general, we want to allow time
windows to overlap, but excessive overlap is almost certainly counterproductive.
We will revisit this issue shortly.

5 100

s5

s4

s1

s2

s3

tef (s3)

tes(s3)

tlf (s3)

Fig. 5. Initial time allocations for tasks in RFQ r1. Only the tes(s) and tlf (s) times
are actually specified in the RFQ.

Once we have initial estimates from the CPM algorithm, there are several
issues to be resolved, as described in the following sections.

Setting the total slack The plan may have a hard deadline, which may be
set by a user or determined by existing commitments for tasks that cannot be
started until tasks in the current RFQ are complete. Otherwise, in the normal
case, the bid-process plan is expected to set the time limits for the RFQ.

It would be interesting to find a way to use the market to dynamically derive
a schedule that maximizes the customer’s payoff. This would require cooperation
of bidders, and could be quite costly. Parkes and Ungar [8] have done something
like this in a restricted domain, but it’s hard to see how to apply it to the more
generalized MAGNET domain.

Task ordering For any pair of tasks in the plan that could potentially be
executed in parallel, we may have a choice of handling them in parallel, or in
either sequential order. For example, in our wine-bottling example, we could
choose to acquire the bottles before buying the corks. This example is a bit
contrived, perhaps, but if there is uncertainty over the ability to complete tasks
which could cause the plan to be abandoned, then (given some straightforward
assumptions such as payments being due when work is completed) the agent’s
financial exposure can be affected by task ordering. If a risky task is scheduled
ahead of a “safe” task, then if the risky task fails we can abandon the plan
without having to pay for the safe task. Babanov [5] has worked out in detail
how to use task completion probabilities and discount rates in an expected-utility
framework to maximize the probabilistic “certain payoff” for an agent with a
given risk-aversion coefficient.

For some tasks, linearizing the schedule will extend the plan’s makespan,
and this must be taken into account in terms of changes to the ultimate payoff.
Note that in many cases the agent may have flexibility in both the start time
and the completion time of the schedule. This would presumably be true of our
wine-bottling example.

Allocating time to individual tasks Once we have made decisions about
the overall time available and about task ordering, the CPM algorithm gives us
a set of preliminary time windows. In most cases, this will not produce the best
results, for several reasons:

Resource availability – In most markets, services will vary in terms of avail-
ability and resource requirements. There may be only a few dozen portable
bottling and labeling machines in the region, while corks may be stored in
a warehouse ready for shipping. There is a high probability that one could
receive several bids for delivery of corks on one specific day, but a much lower
probability that one could find even one bid for a 6-day bottling job for a
specific 6-day period. More likely one would have to allow some flexibility in
the timing of the bottling operation in order to receive usable bids.

Lead-time effects – In many industries, suppliers have resources on the payroll
that must be paid for whether their services are sold or not. In these cases,
suppliers will typically attempt to “book” commitments for their resources

into the future. In our example, the chances of finding a print shop to produce
our labels tomorrow is probably much lower than the chances of finding
shops to print them next month. This means that, at least for some types
of services, one must allow more scheduling flexibility to attract short lead
time bids than for longer lead times. We should also expect to pay more for
shorter lead times.

Task-duration variability – Some services are very standardized (delivering
corks, printing 5000 labels), while others may be highly variable, either be-
cause they rely on human creativity (software development) or the weather
(bridge construction), or because different suppliers use different processes,
different equipment, or different staffing levels (wine bottling). These two
types of variability can usually be differentiated by the level of predictabil-
ity; suppliers that uses a predictable process with variable staffing levels are
likely to be able to deliver on time on a regular basis, while services that are
inherently unpredictable will tend to exhibit frequent deviations from the
predictions specified in bids3.
For services that exhibit a high variability in duration, as specified in bids,
the customer’s strategy may depend on whether a large number of bidders
is expected, and whether there is a correlation between bid price and quoted
task duration. If a large number of bidders is expected, then the customer
may be able to allocate a below-average time window to the task, in the
expectation that there will be some suppliers at the lower end of the dis-
tribution who will be able to perform within the specified window. On the
other hand, if few bidders are expected, a larger than average time window
may be required in order to achieve a reasonable probability of receiving at
least one usable bid.

Excessive allocations to non-critical tasks – One obvious problem with the
time allocations from the CPM algorithm as shown in Figure 5 is that non-
critical tasks (tasks not on the critical path) are allocated too much time,
causing unnecessary overlap in their time windows. All other things being
equal, we are likely to be better off if RFQ time windows do not overlap,
because we will have fewer infeasible bid combinations.

Trading off feasibility for flexibility In general we expect more bidders, and
lower bid prices, if we offer suppliers more flexibility in scheduling their resources
by specifying wider time windows. On the other hand, if we define RFQ time
windows with excessive overlap, a significant proportion of bid combinations
will be unusable due to schedule infeasibility. The intuition is that there will
be some realistic market situations where the customer is better off allowing
RFQ time windows to overlap to some degree, if we take into account price, plan
completion time, and probability of successful plan completion (which requires
at minimum a set of bids that covers the task set and can be composed into

3 Whether the market or customers would be able to observe these deviations may
depend on market rules and incentives, such as whether a supplier can be paid early
by delivering early.

a feasible schedule). This means that the winner-determination procedure must
handle schedule infeasibilities among bids.

Figure 6 shows a possible updated set of RFQ time windows for our wine-
bottling example, taking into account the factors we have discussed. We have
shortened the time windows for tasks s1 and s2, because we believe that bottles
and corks are readily available, and can be delivered when needed. There is
no advantage to allowing more time for these tasks. Market data tells us that
bottling services are somewhat more difficult to schedule than labeling services,
and so we have specified a wider time window for task s3 than for s4. Our
deadline is such that the value of completing the work a day or two earlier is
higher than the potential loss of having to reject some conflicting bids. We also
know from market data that a large fraction of suppliers of the bottling crews can
also provide the labeling service, and so the risk of schedule infeasibility will be
reduced if we receive bids for both bottling and labeling. Finally, there is plenty
of time available for the non-critical label-printing task s5 without needing to
overlap its time window with its successor task s4.

0

s3

s2

s1

s4

105

s5

Fig. 6. Revised time allocations for tasks in RFQ r1.

2.5 Evaluating bids

Once an RFQ is issued and the bids are returned, the agent must decide which
bids to accept. The bidding process is an extended combinatorial auction, be-
cause bids can specify multiple tasks, and there are additional constraints the
bids must meet (the precedence constraints) other than just covering the tasks.
The winner-determination process must choose a set of bids that maximize the
agent’s utility, covers all tasks in the associated RFQ, and forms a feasible sched-
ule.

Formal description of the winner-determination problem Each bid rep-
resents an offer to execute some subset of the tasks specified in the RFQ, for a
specified price, within specified time windows. Formally, a bid b = (r,Sb,Wb, cb)
consists of a subset Sb ∈ Sr of the tasks specified in the corresponding RFQ r,
a set of time windows Wb, and an overall cost cb. Each time window ws ∈ Wb

specifies for a task s an earliest start time tes(s, b), a latest start time tls(s, b),
and a task duration d(s, b).

It is a requirement of the protocol that the time window parameters in a bid
b are within the time windows specified in the RFQ, or tes(s, b) ≥ tes(s, r) and
(tls(s, b) + d(s, b)) ≤ tlf (s, r) for a given task s and RFQ r. This requirement
may be relaxed, although it is not clear why a supplier agent would want to
expose resource availability information beyond that required to respond to a
particular bid. For bids that specify multiple tasks, it is also a requirement that
the time windows in the bids be internally feasible. In other words, for any bid
b, if for any two of its tasks (si, sj) ∈ Sb there is a precedence relation si ≺ sj

specified in the RFQ, then it is required that tes(si, b) + d(si, b) ≤ tls(sj , b).

A solution to the bid-evaluation problem is defined as a complete mapping
S → B of tasks to bids in which each task in the corresponding RFQ is mapped
to exactly one bid, and that is consistent with the temporal and precedence
constraints on the tasks as expressed in the RFQ and the mapped bids.

Figure 7 shows a very small example of the problem the bid evaluator must
solve. As noted before, there is scant availability of bottling equipment and
crews, so we have provided an ample time window for that activity. At the same
time, we have allowed some overlap between the bottling and labeling tasks,
perhaps because we believed this would attract a large number of bidders with
a wide variation in lead times and lower prices. Bid 1 indicates this bottling
service is available from day 3 through day 7 only, and will take the full 5 days,
but the price is very good. Similarly, bid 2 offers labeling from day 7 through
day 10 only, again for a good price. Unfortunately, we can’t use these two bids
together because of the schedule infeasibility between them. Bid 3 offers bottling
for any 3-day period from day 2 through day 7, at a higher price. We can use
this bid with bid 2 if we start on day 4, but if we start earlier we will have to
handle the unlabeled bottles somehow. Finally, bid 4 offers both the bottling
and labeling services, but the price is higher and we would finish a day later
than if we accepted bids 2 and 3.

Evaluation criteria We have discussed the winner-determination problem in
terms of price, task coverage, and schedule feasibility. In many situations, there
are other factors that can be at least as important as price. For example, we
might know (although the agent might not know) that the bottling machine
being offered in bid 3 is prone to breakdown, or that it tends to spill a lot of
wine. We might have a long-term contract with one of the suppliers, Hermann,
that gives us a good price on fertilizer only if we buy a certain quantity of corks
from him every year. We might also know that one of the local printers tends
to miss his time estimates on a regular basis, but his prices are often worth the

RFQ
Time windows

1050

tls(s3, b3)

d(s3, b3)

bottling, 800$

bottling, 500$Bid 1

bottling & labeling, 1200$

Bid 4

tes(s3, b3)

labeling, 300$

Bid 3

Bid 2

s4 (labeling)

s3 (bottling)

Fig. 7. Bid Example

hassle, as long as we build some slack into the schedule when we award a bid to
him.

Many of these factors can be expressed as additional constraints on the
winner-determination problem, and some can be expressed as cost factors. These
constraints can be as simple as “don’t use bid b3” or more complex, as in “if
Hermann bids on corks, and if a solution using his bid is no more than 10%
more costly than a solution without his bid, then award the bid to Hermann.”
Some of them can be handled by preprocessing, some must be handled within
the winner-determination process, and some will require running it twice and
comparing results.

Mixed-initiative approaches There are many environments in which an au-
tomated agent is unlikely to be given the authority to make unsupervised com-
mitments on behalf a person or organization. In these situations, we expect that
many of the decision processes we discuss here will be used as decision-support
tools for a human decision-maker, rather than as elements of a completely au-
tonomous agent. The decision to award bids is one that directly creates commit-
ment, and so it is a prime candidate for user interaction. We have constructed
an early prototype of such an interface. It allows a user to view bids, add simple
bid inclusion and exclusion constraints, and run one of the winner-determination
search methods. Bids may be graphically overlaid on the RFQ, and both the

RFQ and bid time windows are displayed in contrasting colors on a Gantt-chart
display.

Effective interactive use of the bid-evaluation functions of an agent require
the ability to visualize the plan and bids, to visualize bids in groups with con-
straint violations highlighted, and to add and update constraints. The winner-
determination solver must be accessible and its results presented in an under-
standable way, and there must be a capability to generate multiple alternative
solutions and compare them.

2.6 Awarding bids

The result of the winner-determination process is a (possibly empty) mapping
S → B of tasks to bids. We assume that the bids in this mapping meet the
criteria of the winner-determination process: they cover the tasks in the RFQ
and can be composed into a feasible schedule, and they maximize the agent’s
or user’s expected utility. However, we cannot just award the winning bids. In
general, a bid b contains one or more offers of services for tasks s, each with a
duration d(s, b) within a time window w(s, b) > d(s, b). The price assumes that
the customer will specify, as part of the bid award, a specific start time for each
activity. Otherwise, the supplier would have to maintain its resource reservation
until some indefinite future time when the customer would specify a start time.
This would create a disincentive for suppliers to specify large time windows, raise
prices, and complicate the customer’s scheduling problem.

This means that the customer must build a final work schedule before award-
ing bids. We will defer to the next section the issue of dealing with schedule
changes as work progresses. This scheduling activity represents another oppor-
tunity to maximize the customer’s expected utility. In general, the customer’s
utility at this point is maximized by appropriate distribution of slack in the
schedule, and possibly also by deferring task execution in order to defer pay-
ment for completion.

3 Solving the MAGNET winner-determination problem

We now focus on the MAGNET winner-determination problem, originally intro-
duced in Section 2.5. Earlier we have described both an Integer Programming
formulation [9] and a simulated annealing framework for solving this problem [10]
for this problem. Here we will focus on an application of the A* method. The
algorithm presented here solves the winner-determination problem under as-
sumption of a fixed payoff, and does not deal with a payoff that depends on
completion time.

The winner determination problem for combinatorial auctions has been shown
to be NP-complete and inapproximable [11]. This result clearly applies to the
MAGNET winner determination problem, since we simply apply an additional
set of (temporal) constraints to the basic combinatorial auction problem, and we

don’t allow free disposal. In fact, because the additional constraints create addi-
tional bid-to-bid dependencies, and because bids can vary in both price and in
time specifications, the bid-domination and partitioning methods used by oth-
ers to simplify the problem (for example, see [12]) cannot be applied in the
MAGNET case.

Sandholm has shown that there can be no polynomial-time solution, nor even
a polynomial-time bounded approximation [12], so we must accept exponential
complexity. We will see in Section 4 that we can determine probability distri-
butions for search time, based on problem size metrics, and we can use those
empirically-determined distributions in our deliberation scheduling process.

Sandholm described an approach to solving the standard combinatorial auc-
tion winner-determination problem [12] using an iterative-deepening A* formu-
lation. Although many of his optimizations, such as the elimination of dominated
bids and partitioning of the problem, cannot be easily applied to the MAGNET
problem, we have adapted the basic structure of Sandholm’s formulation, and we
have improved upon it by specifying a means to minimize the mean branching
factor in the generated search tree.

In general, tree search methods are useful when the problem at hand can be
characterized by a solution path in a tree that starts at an initial node (root) and
progresses through a series of expansions to a final node that meets the solution
criteria. Each expansion generates successors (children) of some existing node,
expansions continuing until a final node is found. The questions of which node
is chosen for expansion, and how the search tree is represented, lead to many
different search methods. In the A* method, the node chosen for expansion is the
one with the “best” evaluation4, and the search tree is typically kept in memory
in the form of a sorted queue. A* uses an evaluation function

f(N) = g(N) + h(N)

for a node N , where g(N) is the cost of the path from initial node N0 to node
N , and h(N) is an estimate of the remaining cost to a solution node. If h(N)
is a strict lower bound on the remaining cost (upper bound for a maximization
problem), we call it an admissible heuristic and A* is complete and optimal; that
is, it is guaranteed to find a solution with the lowest evaluation, if any solutions
exist, and it is guaranteed to terminate eventually if no solutions exist.

We describe a basic A* formulation of the MAGNET winner-determination
problem, and then we show how this formulation can be adapted to a depth-first
iterative-deepening model [13] to reduce or eliminate memory limitations.

3.1 Bidtree framework

For a basic introduction to the A* algorithm, see [14], or another textbook on
Artificial Intelligence. Our formulation depends on two structures which must
be prepared before the search can run. The first is the bidtree introduced by

4 lowest for a minimization problem, highest for a maximization problem.

Sandholm, and the second is the bid-bucket, a container for the set of bids that
cover the same task set.

A bidtree is a binary tree that allows lookup of bids based on item content.
The bidtree is used to determine the order in which bids are considered during
the search, and to ensure that each bid combination is tested at most once. In
Sandholm’s formulation, the collection of bids into groups that cover the same
item sets supports the discard of dominated bids, with the result that each leaf in
the bidtree contains one bid. However, because our precedence constraints create
dependencies among bids in different buckets, bid domination is a much more
complex issue in the MAGNET problem domain. Therefore, we use bid-buckets
at the leaves rather than individual bids.

The principal purpose of the bidtree is to support content-based lookup of
bids. Suppose we have a plan S with tasks sm, m = 1..4. Further suppose that we
have received a set of bids bn, n = 1..10, with the following contents: b1 : {s1, s2},
b2 : {s2, s3}, b3 : {s1, s4}, b4 : {s3, s4}, b5 : {s2}, b6 : {s1, s2, s4}, b7 : {s4},
b8 : {s2, s4}, b9 : {s1, s2}, b10 : {s2, s4}. Figure 8 shows a bidtree we might
construct for this problem. Each node corresponds to a task. One branch, labeled
in, leads to bids that include the task, and the other branch, labeled out, leads
to bids that do not.

in

in

out

out

in

s1

s2

s3

s4 outin inoutin

outout

out

out

out

outin

inin

in

b7b4b5b8, b10b2b3b1, b9b6

Fig. 8. Example bidtree, lexical task order

We use the bidtree by querying it for bid-buckets. A query consists of a
mask, a vector of values whose successive entries correspond to the “levels” in
the bidtree. Each entry in the vector may take on one of three values, {in, out,
any}. A query is processed by walking the bidtree from its root as we traverse
the vector. If an entry in the mask vector is in, then the in branch is taken at the
corresponding level of the tree, similarly with out. If an entry is any, then both
branches are taken at the corresponding level of the bidtree. So, for example, if

we used a mask of [in, any, any, in], the bidtree in Figure 8 would return the
bid-buckets containing {b6} and {b3}.

A bid-bucket is a container for a set of bids that cover the same task set.
In addition to the bid set, the bid-bucket structure stores the list of other bid-
buckets whose bids conflict with its own (where we use “conflicts” to mean that
they cover overlapping task sets). This recognizes the fact that all bids with the
same task set will have the same conflict set.

In order to support computation of the heuristic function, we use a some-
what different problem formulation for A* and IDA* than we used for the IP
formulation described in [9]. In that formulation, we were minimizing the sum
of the costs of the selected bids. In this formulation, we minimize the cost of
each of the tasks, given a set of bid assignments. This allows for straightforward
computation of the A* heuristic function f(N) for a given node N in the search
tree. We first define

f(N) = g(Sm(N)) + h(Su(N))

where Sm(N) is the set of tasks that are mapped to bids in node N , while
Su(N) = Sr \ Sm(N) is the set of tasks that are not mapped to any bids in the
same node. We then define

g(Sm(N)) =
∑

j|sj∈Sm

c(bj)

n(bj)

where bj is the bid mapped to task sj , c(bj) is the total cost of bj , n(bj) is the
number of tasks in bj , and

h(Su(N)) =
∑

j|sj∈Su

c(b⋆
j)

n(b⋆
j)

where b⋆
j is the “usable” bid for task sj that has the lowest cost/task. By “us-

able,” we mean that the bid b⋆
j includes sj , and does not conflict (in the sense

of having overlapping task sets) with any of the bids bj already mapped in node
N .

Note that, unlike the case with the IP solver, the definition of g(Sm(N))
can be expanded to include other factors, such as risk estimates or penalties
for inadequate slack in the schedule, and these factors can be non-linear. The
only requirement is that any such additional factor must increase the value
of g(Sm(N)), and not decrease it, because otherwise the admissibility of the
heuristic will be compromised, and we no longer would have a complete search
method.

3.2 A* formulation

Now that we have described the bidtree and bid-bucket, we can explain our
optimal tree search formulation. The algorithm is given in Figure 9.

The principal difference between this formulation and the “standard” A*
search formulation (see, for example, [14]), is that nodes are left on the queue

1 Procedure A* search

2 Inputs:
3 {S, V}: the task network to be assigned
4 B: the set of bids, represented as a bidtree
5 Output:
6 Nopt : the node having a mapping M(Nopt) = S → B

of tasks to bids with an optimal evaluation, if one exists
7 Process:
8 Q← priority queue, sorted by node evaluation f(N)
9 N0 ← empty node

10 mask ← {in, any, any, cdots}
11 Bc

N0
← bidtree query(B,mask)

“Bc

N0
is a set of bids (in the form of a set of bid buckets), containing

the bids that can be used to expand N0”
12 insert(Q, N0)
13 loop

14 if empty(Q) then return failure

15 N ← first(Q)
16 if solution(N) then return N

17 N ′ ← astar expand(N) “see Figure 10”
18 if N ′ = null then remove front(Q) “Remove nodes that fail to expand”
19 else if feasible(N ′) then insert(Q, N ′)

Fig. 9. Bidtree-based A* search algorithm.

(line 15) until they cannot be expanded further, and only a single expansion is
tried (line 17) at each iteration. This is to avoid expending unnecessary effort
evaluating nodes.

The expansion of a parent node N to produce a child node N ′ (line 17 in
Figure 9) using the bidtree is shown in Figure 10. Here we see the reason to keep
track of the buckets for the candidate-bid set of a node. In line 16, we use the
mask for a new node to retrieve a set of bid-buckets. In line 18, we see that if
the result is empty, or if there is some unallocated task for which no usable bid
remains, we can go back to the parent node and just dump the whole bucket
that contains the candidate we are testing.

In line 17 of Figure 10, we must find the minimum-cost “usable” bids for
all unallocated tasks Su (tasks not in the union of the task sets of BN ′), as
discussed earlier. One way (not necessarily the most efficient way) to find the
set of usable bids is to query the bidtree using the mask that was generated in
line 14, changing the single in entry to any. If there is any unallocated task that
is not covered by some bid in the resulting set, then we can discard node N ′

because it cannot lead to a solution (line 22). Because all other bids in the same
bidtree leaf node with the candidate bid bx will produce the same bidtree mask
and the same usable-bid set, we can also discard all other bids in that leaf node
from the candidate set of the parent node N .

1 Procedure astar expand

2 Inputs:
3 N : the node to be expanded
4 Output:
5 N ′: a new node with exactly one additional bid, or null
6 Process:
7 buckets ← ∅
8 while buckets = ∅ do
9 if Bc

N = ∅ then return null “Bc

N is set of candidate bids for node N”
10 bx ← choose(Bc

N) “pick a bid from the set of candidates”
11 Bc

N ← B
c

N − bx “remove the chosen bid from the set”
12 N ′ ← new node
13 BN′ ← BN + bx “BN′ is the set of bids in node N ′”
14 Su ← unallocated tasks(N ′) “tasks not covered by any bid b ∈ BN′”
15 mask ← create mask(B′

N)
“for each task that is covered by a bid in BN′ , set the corresponding
entry to out. Then find the first task in s ∈ Su (the task in Su with
the minimum index in the bidtree) and set its entry to in. Set the
remaining entries to any”

16 buckets ← bidtree query(B,mask)
17 Bu ← ∀s ∈ Su, minimum usable bid(s) “see the narrative”
18 if (solution(N ′))

∨((buckets 6= ∅) ∧ (¬∃s ∈ Su|minimum usable bid(s) = null))
19 then

20 Bc

N′ ← buckets “candidates for N ′”
21 else

22 remove(Bc

N , bucket(bx))
“all bids in the bucket containing bx in node N will produce the
same mask and therefore an empty candidate set or a task that
cannot be covered by any usable bid”

23 end while

24 g(N ′)←
∑

b∈B
N′

cb

25 h(N ′)←
∑

b∈Bu
avg cost(b)

26 return N ′

Fig. 10. Bidtree-based node-expansion algorithm.

This implementation is very time-efficient but A* fails to scale to large prob-
lems because of the need to keep in the queue all nodes that have not been fully
expanded. Limiting the queue length destroys the optimality and completeness
guarantees. Some improvement in memory usage can be achieved by setting an
upper bound once the first solution is found in line 18 of Figure 10. Once an up-
per bound flimit exists, then any node N for which f(N) > flimit can be safely
discarded, including nodes already on the queue. Unfortunately, this helps only
on the margin; there will be a very small number of problems for which the

resulting reduction in maximum queue size will be sufficient to convert a failed
or incomplete search into a complete one. We address this in the next section.

One of the design decisions that must be made when implementing a bidtree-
based search is how to order the tasks (or items, in the case of a standard
combinatorial auction) when building the bidtree. It turns out that this decision
can have a major impact on the size of the tree that must be searched, and
therefore on performance and predictability. As we have shown in [15], the tasks
should be ordered such that the tasks with higher numbers of bids come ahead
of tasks with lower numbers of bids. This ordering is exploited in line 18 of
Figure 10, where bid conflicts are detected.

3.3 Iterative Deepening A*

Iterative Deepening A* (IDA*) [13] is a variant of A* that uses the same two
functions g and h in a depth-first search, and which keeps in memory only the
current path from the root to a particular node. In each iteration of IDA*, search
depth is limited by a threshold value flimit on the evaluation function f(N).

1 Procedure IDA* search

2 Inputs:
3 {S, V}: the task network to be assigned
4 B: the set of bids, represented as a bidtree
5 Output:
6 Nopt : the node having a mappingM(Nopt) = S → B of tasks to bids

with an optimal evaluation, if one exists
7 Process:
9 N0 ← empty node

10 g(N0)← 0
11 h(N0)←

∑
s∈S

avg cost(minimum bid(s))

12 flimit ← f(N0)
13 mask ← {in, any, any, · · ·}
14 best node ← null
15 while (best node = null) ∧ (flimit 6=∞) do
16 Bc

N0
← bidtree query(B,mask)

“Bc

N0
is a set of bids (in the form of a set of bid buckets),

containing the bids that can be used to expand N0. We have to
repeat this for every iteration.”

17 new limit ← dfs contour(N0)
18 if best node = null then
19 flimit ← max(new limit , z · flimit) “see narrative in this section”
20 end while

21 return best node

Fig. 11. Bidtree-based Iterative Deepening A* search algorithm: top level.

We show in Figure 11 a version of IDA* that uses the same bidtree and node
structure as the A* algorithm. The recursive core of the algorithm is shown in
Figure 12. This search algorithm uses the same node expansion algorithm as we
used for the A* search, shown in Figure 10 above.

1 Procedure dfs contour

2 Inputs:
3 N : a node
4 Output:
5 new limit : a candidate for the flimit value for the next contour. This is

either the first f(N) value seen that is larger than flimit, or
the value of the best solution node found. If it is determined
that no solution is possible, then we return ∞.

6 Process:
7 new limit ← f(N)
8 if new limit > flimit then “enforce contour limit”
9 return new limit

10 if solution(N) then “switch to branch-and-bound”
11 flimit ← new limit “set new upper bound”
12 best node ← N

13 return new limit
14 nextL←∞
15 while Bc

N 6= ∅ do
16 N ′ ← astar expand(N)
17 if (N ′ 6= null) ∧ (feasible(N ′)) then

18 new limit ← dfs contour(N ′)
19 nextL← min(nextL, new limit)
20 end while

21 return nextL

Fig. 12. Bidtree-based Iterative Deepening A* search algorithm: depth-first contour.

There are three issues to note in this algorithm:

– The tuning parameter z shown in line 19 of Figure 11 is a positive number
> 1. This controls the amount of additional depth explored in each iteration
of the main loop that starts on line 15. Experimentation shows that a good
value is 1.15, and that it is not very sensitive (performance falls off noticeably
with z < 1.1 or z > 1.2).

– Whenever a solution is found, the value of flimit is updated in line 11 of
Figure 12. This follows the usage in Sandholm [12], and limits exploration
to nodes (and solutions) that are better than the best found so far.

– We test nodes for feasibility in line 17 of Figure 12 to prevent consideration
and further expansion of nodes that cannot possibly lead to a solution.

4 Search performance

The winner determination problem must be solved within the confines of a time-
limited negotiation scenario. More significantly, the agent must allocate time to
the winner-determination process when it sets the negotiation timeline prior to
issuing an RFQ. Failure to solve the winner-determination problem within the
allocated time will result in failure of the negotiation process.

Our goal is to measure the probability distributions of search times across a
range of easily-measured (or easily-estimated) problem metrics. We prefer met-
rics that can be estimated prior to issuing an RFQ, since that is when de-
liberation scheduling must be done. This will allow us to schedule the winner-
determination deliberation with a known level of confidence in finding a solution.

We have chosen four problem size and complexity metrics for evaluation.

Task count – This is simply the number of tasks m in a task network, and can
be directly measured.

Bid count – The number of bids submitted n. Alternatively, the number of
bids/task. We will assume that this value can be estimated from market
statistics, given the task network composition and possibly other data such
as lead time or allowable schedule slack.

Bid size – The mean number of tasks specified in each bid |Si|, i = 1 . . . n. We
assume this can also be estimated from market statistics. We can think of a
“specialist market” as being one in which most bidders bid on only one or
a few task types, while a “generalist market” is one in which many bidders
will bid on large chunks of a plan.

Plan complexity – The mean size of the precedence set of a task in the task
network. This can be directly measured in the task network.

Some of these problem-size parameters can be controlled independently, and
some are not as independent as we might like. For example, when we increase
the number of tasks in the task network, we also need to increase the number
of bids and/or the number of tasks/bid if we wish to retain the same number
of bids for each task. For that reason, we will use bids/task and bid size/task
network size when it is important to consider independent variables.

In the remainder of this chapter, we report on a set of experiments that give
us the necessary probability distribution data for the IDA* winner-determination
method. There are clearly limits on its scalability, because the problem has un-
avoidable exponential complexity. We shall observe runtime characteristics with
exponential tails, so there will be unpredictable situations where good solutions
will not be found within any fixed time limit. This is just another way of saying
that 100% probability of finding a solution within a predetermined time limit
is not achievable. Instead, our goal is to develop the data that will allow us to
convert a desired probability of success to a time allocation, given the necessary
problem-size metrics.

4.1 Experimental setup

The experimental setup consists of a plan generator to produce randomly-generated
task networks, a bid generator to produce randomly-generated bids for each task
network, and a bid evaluator to perform the winner-determination search. The
winner-determination process is instrumented to measure both elapsed time and
the number of steps performed.

The problem-generation process requires a stream of random numbers. In
order to be able to repeat test conditions, we maintain 2 separate streams,
one for generating plans and RFQs, and one for generating bids Each can be
initialized with a seed, so we have the ability to repeat the same plan sets with
different bid sets.

All experiments were run using a dedicated 1800 MHz Intel/Linux machine.
Timings are given in wall-clock time. The MAGNET system (including the
IP preprocessor and the IDA* solver) is written in Java, and the IP solver is
lp solve, written in C and available from ftp://ftp.ics.ele.tue.nl/pub/lp solve/.

Customer: Generate plan For these experiments, plans are randomly-generated
task networks, with a number of controllable parameters. Task Network variables
include:

Number of tasks
Mix of task types – Task types are characterized by expected duration de, du-

ration variability σ(d), average price ce, and price variability σ(c). Both du-
ration and price are normally distributed, positive values (the distributions
are truncated at 0). For all experiments, the task types and their properties
are as given in Table 2.

Branch factor – This controls the average number of precedence relationships
generated per task, which we call “fan-in.” For example, if a particular task
has two predecessors, then the fan-in value for that task is 2. As the plan
is built, each new task sj is linked to each of the previous tasks sj′ , j′ =
1 . . . (j − 1) with a probability pl of (branchFactor/(taskCount − 1)). The
completed network is filtered to remove most redundant precedence relations,
so the final number is lower than the initial number generated.

Table 2. Task types and relative proportions used in performance experiments

Duration Price Resource
Name Proportion de σ(d) ce σ(c) Availability

short 40% 2.0 0.4 500 0.2 0.8

medium 40% 3.0 0.2 1000 0.3 0.7

long 20% 8.0 0.3 1500 0.3 0.4

As an example, Figure 13 shows the task network for the first of the problems
used in the bid-count test series described in Section 4.2 below. Keep in mind

that duration values at this point in the process are expected values. Actual
durations cannot be known until bids are awarded.

s17

s9

s13

s11

s5

s2

s3

s16

s1

s15

s0

s19

s18

s12

s10

s6

s8

s7

s14

s4

Fig. 13. Task network for Problem #1. Box widths indicate relative task durations.

Customer: Construct and issue a request for quotes The output of the
planning step is simply a task network, made up of tasks for which we have
some statistical data. Before we can ask for bids, we must add some constraints
to communicate our desires more clearly to potential bidders, and we must con-
sider the availability of bidders and their resources. The goal is to maximize the
“usefulness” and minimize the cost of the bids we receive. Ultimately, we would
expect to use Babanov’s method based on Expected Utility to do this [5], but
for these experiments we use a simpler approach that generates bids with well-
defined statistics that are adequate to exercise our winner-determination solvers.
We illustrate the RFQ generation process with the example task network shown
in Figure 14.

s1
s6

s2

s4

s5s3

Fig. 14. Example task network for RFQ illustration.

For these experiments, the RFQ time windows Wr are computed as follows:

1. Compute the “expected makespan” dm for the entire task network. The
makespan is simply the sum of the expected durations of the “critical” tasks,

or the tasks that are on the critical path assuming all tasks are assigned their
expected durations.

2. Add some amount of “plan slack” ζ to the task network. This simply relaxes
the plan deadline by some fraction. If the start time of the plan is t0, then the
earliest possible completion time, assuming all tasks are completed within
their expected durations, is tm = t0 +dm. After applying plan slack, we have
tgoal = t0 + ζdm.

3. Determine final time windows for individual tasks. This is done in two steps.
The first step is to set the minimum time allocation d(sj) for each task sj

to some value dmin(sj) = ηde(sj) where η <= ζ. Then we run the CPM
algorithm with a start time of t0, and a deadline of tgoal . Figure 15 shows
the resulting start and finish times for the task network of Figure 14, using
ζ = 1.2 and η = 1.15.

105

ηde(s4)

tlf (s2)

s6

s5

s4

s3

s2

s1

tes(s2)

15tmt0

de(s2)

Fig. 15. Gantt chart for task network of Figure 14 with ζ = 1.2, η = 1.15.

There is no doubt that this procedure generates time windows that are sub-
optimal, because of the large overlaps produced for noncritical tasks. However, it
is very adequate for our experimental purposes, because it exercises the feasibil-
ity testing by ensuring that virtually all problems will have some infeasibilities
among bids.

Supplier: Generate bids For these experiments, we used a test component
that masquerades as an entire community of supplier agents. Each time a new
RFQ is passed to it, it attempts to generate a specified number of bids.

For a given RFQ r, individual bids bi are generated as follows:

1. Select a task sj at random from Sr, and attempt to generate bid parameters
for sj .

2. Use the task-type parameters to generate a supplier time window

wj(bi) = {tes(sj , bi), tls(sj , bi), d(sj , bi)}

for each task. We first generate the duration d(sj , bi) using a normal dis-
tribution with mean and standard deviation equal to the expected duration
and variability from the task type. If the resulting duration

d(sj , bi) > (tlf (sj , r) − tes(sj , r))

then it cannot be used and the attempt is abandoned. Otherwise, an early
start tes(sj , bi) is generated from a uniform distribution over the interval

[tes(sj , r), (tlf (sj , r) − d(sj , bi))] ,

and a late start over the remaining slack in the RFQ time window

[tes(sj , bi), (tlf (sj , r) − d(sj , bi))] .

Actually, this step is slightly more complex after the first task-bid is gen-
erated, because of the need to generate bids with internal feasibility. We
simply tighten up each RFQ time window with the maximum early finish of
preceding tasks and the minimum late start of succeeding tasks.

3. If we successfully generate a time window, we call it a “valid task specifica-
tion” and add the task sj and its time window wj(bi) to the bid. If a valid
task specification was generated, then with probability plink , each predeces-
sor and successor link from task sj is followed to choose additional tasks sj′

to add to the bid, and so on recursively.
4. To complete the process for a single bid, we determine a cost for the overall

bid and return it.
5. Because valid task specifications are not always achieved, some attempts to

generate bids will fail, and so the number of bids actually generated is nearly
always somewhat smaller than the target number. We can optionally check
the resulting bid-set before it is returned, and test for coverage. If coverage
is not achieved, then for each missing task, we make an additional attempt
to generate a bid, with the missing task selected as a starting point in Step
1 rather than a random task. This is useful because returned bid-sets that
do not cover all tasks will not exercise our winner-determination solvers. All
experiments reported in this chapter used this feature.

The resulting bids specify “contiguous” sets of tasks, and each bid is guar-
anteed to be internally feasible.

4.2 Characterizing the Iterative Deepening A* solver

In this section we examine the performance of the bidtree-based IDA* solver that
was described in Section 3. We want to examine the scalability and predictability
of this algorithm, and to compare it with the IP solver.

Each problem set consists of 100 problems, with randomly-generated task
networks and randomly-generated bids as described above. Our problem gener-
ator has a large number of parameters; we kept all of them constant except for
Task Count, Bid Count, Bid Size, and Network Complexity (branch factor).

Bid count experiment Here we examine the scalability of the IDA* method
as the number of bids is varied over a 4:1 range, with task count and bid size
held constant. Each row in Table 3 represents 100 problems, each with 30 tasks
and varying numbers of bids. The same set of 100 task networks is used in each
row; only the bid sets are varied. In the table, the “Bid Size” column gives the
average size of bids (number of tasks per bid). The “# Solved” column gives
the number of problems solved out of 100 (not all 100 problems were necessarily
solvable), and “Mean Time” gives the mean search time in milliseconds. The
meaning of the remaining 3 columns will become clear shortly.

Table 3. Bid Count experiment for the IDA* solver

Task Bid Bid # Solved Mean χ2

Count Count Size (of 100) Time (ms) m v (9 dof)

30 80 7.45 64 45.4 15.9 1.35 2.36

30 106 7.45 82 106 48.5 1.33 1.48

30 133 7.53 99 894 163 1.96 7.33

30 159 7.55 100 2180 500 2.36 3.50

30 186 7.48 100 34,700 1410 3.03 1.18

30 213 7.38 100 22,000 3070 3.33 2.92

30 239 7.46 99 137,000 9230 4.80 0.83

30 265 7.35 100 152,000 16,000 4.55 1.60

While the data in Table 3 show average performance and give some indication
of variability, we are really more interested in knowing the probability that a
solution can be determined in a given amount of time. For that purpose, we
show in Figure 16 the complete runtime distributions for these problem sets. For
each curve, we show actual observations along with a lognormal distribution that
minimizes the χ2 metric5. In Table 3, the last 3 columns give the parameters
of the inferred lognormal density function. The m column is the median value
(the value of log m is the mean of the log of the distribution), and the v column
is the standard deviation of the log of the distribution. We also give χ2 values,
computed by the equiprobable method [16]. For 9 degrees of freedom, χ2 = 3.5
corresponds to roughly a 95% confidence that the data fit the hypothesized
distribution. In general, a large value of χ2 shows up in a plot such as Figure 16
as a very obvious failure of the observations to lie atop the inferred distribution
curve.

It seems clear that the 186-bid row in Table 3 contains a large outlier. Fig-
ure 16 shows the observed and inferred distributions for all of the problem sets
in this experiment. We can see visually that the lognormal distributions pro-
vide a good approximation for this data. For 9 dof, the 95% confidence point
5 The χ2 metric is determined by dividing the inferred density function into a number

of equal areas, and counting the number of observations that fall into each of those
zones. The χ2 value is a measure of the deviation from a “perfect fit”.

is approximately 3.5, so all but one of these sets is at or above a 95% match
to the given lognormal distribution. This gives us confidence that we can base
predictions on these inferred distributions. The single outlier in the 186-bid set
can be seen in the plot at about 3 · 106 msec.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1e+00 1e+01 1e+02 1e+03 1e+04 1e+05 1e+06 1e+07

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

IDA* Search Time (msec)

80 bids
LN(15.9,1.35)

106 bids
LN(48.5,1.33)

133 bids
LN(162.6,1.96)

159 bids
LN(500.1,2.36)

186 bids
LN(1412.4,3.03)

213 bids
LN(3067.6,3.33)

239 bids
LN(9229.2,4.80)

265 bids
LN(16028.2,4.55)

Fig. 16. IDA* run-time distributions for problems with 30 tasks, bid count ranging
from 80 bids to 265 bids, bid size approx. 7.5 tasks/bid.

Bid size experiment We now turn to the bid-size dimension of problem vari-
ability. We expect that larger average bid sizes will result in shorter search times,
because the number of bids in a solution will be smaller. This leads to fewer
combinations in the search space, and fewer precedence constraints that must
be generated and solved (since bids are required to be internally feasible). One
way to see this is to look at an upper bound on the number of possible solutions
as bid size varies. A simple upper bound is the number of combinations of bids
C = n!/(n−(m/b))! where n is the number of bids, m is the number of tasks, and
b is the mean number of tasks/bid. Sandholm [12, 17] avoids this with small bid
sizes by partitioning the bids into non-overlapping subsets. This works because
small bids have fewer overlaps, and because the items in a simple combinatorial
auction are arbitrarily separable, there being no constraints among them. We
cannot use this approach because of the presence of precedence constraints that
connect the items at auction (the tasks).

Our problem generator uses a somewhat inexact method to “influence” the
sizes of bids. As described earlier, the bid-generation process generates “contigu-
ous” bids by choosing a starting point in the task network, and then recursively
following predecessor and successor links with some probability. In this series,

we have varied that probability from a low of 0.2 to a high of 0.9. Bid size is also
influenced by the sizes of time windows, since the “success” in generating a bid
for a particular task is a function of both the size of the time window specified
in the RFQ, and the simulated “resource availability” recorded for the type of
each task. The task networks in these problem sets are the same as the ones
used in the bid-count experiment in the previous section.

For this experiment, we generated 100 problems with 30 tasks and 150 “bid
attempts”. We then varied the probability that the bidder will follow precedence
links in generating multiple-task bids from 0.3 to 0.9. Table 4 gives the raw
data and the parameters for the inferred lognormal distributions for this exper-
iment. All but the 7.53 tasks/bid and the 11.5 tasks/bid sets fit the lognormal
distribution quite well, as evidenced by the χ2 values.

Table 4. Bid Size experiment for the IDA* solver

Task Bid Bid # Solved Mean χ2

Count Count Size (of 100) Time (ms) m v (9 dof)

30 134 2.43 96 3,120,000 21,900 7.76 1.13

30 133 3.81 92 800,000 1300 5.38 1.66

30 133 5.58 97 2030 314 2.61 1.13

30 133 7.53 99 936 163 1.98 7.10

30 133 9.00 90 249 110 1.34 3.82

30 133 10.30 91 121 60.2 0.874 3.17

30 133 11.50 92 69.0 48.4 0.483 7.63

Figure 17 shows the observed and inferred runtime distributions for selected
sets from this experiment. Clearly, both difficulty and variability rise significantly
as bid size is reduced.

Task count experiment The next set of experiments examines scalability of
the search process as the number of tasks varies, with a (nearly) constant ratio
of bids to tasks (the ratio varies somewhat due to the random nature of the
bid-generation process). We again generated 100 problems for each set, varying
the task count over a 10:1 range from 5 tasks to 50 tasks, with the number
of “bid attempts” at about 3.5 bids/task. Table 5 gives the raw data and the
parameters for the inferred lognormal distributions for this experiment. These
data do not fit the “inferred” lognormal distributions as well as the data in the
previous section, for reasons that are unclear. In the first two sets that appears
to be because of quantizing error (the clock resolution is only 1 ms, and the
mean search time for the 5-task set was just 2.12 ms). For the other poor fits
in the 35-task and 50-task sets, the errors seem unlikely to strongly impact our
ability to use the 95% point as an estimator, since there is a crossover between
the data and the lognormal curve in that region.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1e+00 1e+01 1e+02 1e+03 1e+04 1e+05 1e+06 1e+07 1e+08 1e+09

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

IDA* Search Time (msec)

2.43 tasks/bid
LN(21921.2,7.76)

3.81 tasks/bid
LN(1299.1,5.38)

5.58 tasks/bid
LN(313.9,2.61)

9.0 tasks/bid
LN(109.6,1.34)
11.5 tasks/bid
LN(48.4,0.48)

Fig. 17. IDA* run-time distributions for problems with 30 tasks, 133 bids, bid size
ranging from 2.4 tasks to 11.5 tasks/bid.

Table 5. Task Count experiment for the IDA* solver

Task Bid Bid # Solved Mean χ2

Count Count Size (of 100) Time (ms) m v (9 dof)

5 13.5 2.10 94 2.12 1.81 0.499 31.7

10 29.0 3.27 94 4.78 3.01 0.716 9.27

15 45.4 4.46 90 9.22 5.93 0.664 4.02

20 61.0 5.45 85 22.4 12.2 1.18 3.97

25 77.7 6.30 85 31.1 19.0 0.874 0.76

30 93.4 7.40 80 81.4 27.3 0.955 4.03

35 111 8.42 74 914 47.0 1.96 8.55

40 127 9.65 68 149 61.1 1.35 2.99

45 142 11.2 66 146 74.7 1.19 1.44

50 160 12.2 61 597 98.9 1.61 6.38

Figure 18 shows the observed and inferred runtime distributions for selected
sets from this experiment.

Task network complexity experiment We have examined variability due
to the number of tasks, the number of bids, and the number of tasks in an
auction. There are many other potential sources of variability, some of which
can be measured or estimated prior to submitting an RFQ, and some of which
clearly cannot (for example, the number of bids in an optimal solution). One
parameter that is easy to measure is the density of precedence constraints in the

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1e-01 1e+00 1e+01 1e+02 1e+03 1e+04 1e+05

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

IDA* Search Time (msec)

50 tasks
LN(98.9,1.61)

40 tasks
LN(61.1,1.35)

30 tasks
LN(27.3,0.96)

20 tasks
LN(12.2,1.18)

10 tasks
LN(3.0,0.72)

Fig. 18. IDA* run-time distributions for problems with 10 to 50 tasks, about 3.1
bids/task.

task network. However, given the way we generate plans and bids, it is not easy
to build experiments that control this parameter independently.

In all experiments reported so far, the “Branch Factor” (see the definition in
Section 4.1) has been set to a value of 2.4. The example task network shown in
Figure 13 was built with this value. In this experiment, the branch factor is varied
from 1.0 to 4.0 in increments of 1.0. Because root tasks have no predecessors, and
because of the elimination of redundant precedence links, the actual number of
precedence relationships per task is generally much lower than the branch factor.
The results are shown in Table 6, where the first column, labeled “Fan In,” gives
the actual mean number of precedence links per task. There were 35 tasks in
each set of 100 problems.

Table 6. Task network complexity experiment for the IDA* solver.

Fan Bid Bid # Solved Mean χ2

In Count Size (of 100) Time (ms) σ m v (9 dof)

0.489 112 2.01 86 76100 516,000 505 6.74 0.966

0.876 111 5.06 100 427 2000 75.8 2.15 0.974

1.371 109 11.9 100 30.5 22.8 22.9 0.632 0.972

1.735 109 16.0 100 20.7 14.8 15.9 0.552 0.930

1.735 109 2.65 56 365,000 2,044,000 1975 9.85 1.000

As is evident from the table, the way bids are generated in our experimental
setup causes bid count to go down as the number of precedence links is reduced.
This is likely to cause a conflation of the network complexity factor with bid
count effects. The probability distributions for this set are shown in Figure 19.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1e+00 1e+01 1e+02 1e+03 1e+04 1e+05 1e+06 1e+07 1e+08

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

IDA* Search Time (msec)

fanin=1.74,bs=2.65
LN(1975.4,9.85)

fanin=1.74,bs=16.0
LN(15.9,0.55)

fanin=1.37,bs=11.9
LN(22.9,0.63)

fanin=.961,bs=6.22
LN(73.5,1.93)

fanin=.489,bs=2.01
LN(504.6,6.74)

Fig. 19. Observed and inferred runtime distributions for the IDA* solver across a range
of task network complexity values.

5 Related Work

This work draws from several fields. In Computer Science, it is related to work
in artificial intelligence and autonomous agents. In Economics, it draws from
auction theory and expected utility theory. From Operations Research, we draw
from work in combinatorial optimization.

5.1 Multi-agent negotiation

MAGNET proposes using an auction paradigm to support problem-solving inter-
actions among autonomous, self-interested, heterogeneous agents. Several other
approaches to multi-agent problem-solving have been proposed. Some of them
use a “market” abstraction, and some do not.

Rosenschein and Zlotkin [18] show how the behavior of agents can be influ-
enced by the set of rules system designers choose for their agents’ environment.
In their study the agents are homogeneous and there are no side payments. In
other words, the goal is to share the work, in a more or less “equitable” fash-
ion, but not to have agents pay other agents for work. They also assume that

each agent has sufficient resources to handle all the tasks, while we assume the
contrary.

In Sandholm’s TRACONET system [19, 20], agents redistribute work among
themselves using a contracting mechanism. Sandholm considers agreements in-
volving explicit payments, but he also assumes that the agents are homogeneous
– they have equivalent capabilities, and any agent can handle any task. MAG-
NET agents are heterogeneous, and in general do not have the resources or
capabilities to carry out the tasks necessary to meet their own goals without
assistance from others.

Planning systems (see, for instance, [21–23]) assume multiple agents that
operate independently. However, in those systems the agents are explicitly coop-
erative, and all work toward the achievement of a shared goal. MAGNET agents
are trying to achieve their own goals and to maximize their own profits; there is
no global or shared goal.

Solving problems using markets and auctions MAGNET uses an auction-
based negotiation style because auctions have the right economic and motiva-
tional properties to support “reasonable” resource allocations among heteroge-
neous, self-interested agents. However, MAGNET uses the auction approach not
only to allocate resources, but also to solve constrained scheduling problems.

A set of auction-based protocols for decentralized resource-allocation and
scheduling problems is proposed in [24]. The analysis assumes that the items in
the market are individual discrete time slots for a single resource, although there
is a brief analysis of the use of the Generalized Vickrey Auctions [25] to allow for
combinatorial bidding. A combinatorial auction mechanism for dynamic creation
of supply chains was proposed and analyzed in [26]. This system deals with the
constraints that are represented by a multi-level supply-chain graph, but does not
deal with temporal and precedence constraints among tasks. MAGNET agents
must deal with multiple resources and continuous time, but we do not currently
deal explicitly with multi-level supply chains6

Several proposed bidding languages for combinatorial auctions allow bidders
to express constraints, for example [27, 4]. However, these approaches only allow
bidders to communicate constraints to the bid-taker (suppliers to the customer,
in the MAGNET scenario), while MAGNET needs to communicate constraints
in both directions.

Infrastructure support for negotiation Markets play an essential role in
the economy [28], and market-based architectures are a popular choice for mul-
tiple agents (see, for instance, [29–32] and our own MAGMA architecture [33]).
Most market architectures limit the interactions of agents to manual negotia-
tions, direct agent-to-agent negotiation [20, 34], or some form of auction [35].

6 Individual MAGNET agents can deal with multi-level supply chains by subcontract-
ing, but this requires that the initial time allocation provide sufficient slack for the
extra negotiation cycles.

The Michigan Internet AuctionBot [35] is a very interesting system, in that it
is highly configurable, able to handle a wide variety of auction rules. It is the
basis for the ongoing Trading Agent Competition [36], which has stimulated
interesting research on bidding behavior in autonomous agents, such as [37].

Matchmaking, the process of making connections among agents that request
services and agents that provide services, will be an important issue in a large
community of MAGNET agents. The process is usually done using one or more
intermediaries, called middle-agents [38]. Sycara et al. [39] present a language
that can be used by agents to describe their capabilities and algorithms to use
it for matching agents over the Web. Our system casts the Market in the role of
matchmaker.

The MAGNET market infrastructure depends on an Ontology to describe
services that can be traded and the terms of discourse among agents. There has
been considerable attention to development of detailed ontologies for describing
business and industrial domains (see, for instance, [40, 41]).

5.2 Combinatorial auctions

Determining the winners of a combinatorial auction [42] is an NP-complete
problem, equivalent to the weighted bin-packing problem. A good overview of
the problem and approaches to solving it is [43]. Dynamic programming [44]
works well for small sets of bids, but it does not scale well, and it imposes signif-
icant restrictions on the bids. Sandholm [12, 45] relaxes some of the restrictions
and presents an algorithm for optimal selection of combinatorial bids, but his
bids specify only a price and a set of items. Hoos and Boutilier[46] describe a
stochastic local search approach to solving combinatorial auctions, and charac-
terize its performance with a focus on time-limited situations. A key element
of their approach involves ranking bids according to expected revenue; it’s very
hard to see how this could be adapted to the MAGNET domain with temporal
and precedence constraints, and without free disposal7. Andersson et al. [47] de-
scribe an Integer Programming approach to the winner determination problem
in combinatorial auctions. Nisan [27] extends this model to handle richer bid-
ding languages for combinatorial auctions, and we have extended it to handle
the MAGNET situation in [9]. More recently, Sandholm [45] has described an
improved winner-determination algorithm called BOB that uses a combination
of linear programming and branch-and-bound techniques. It is not clear how
this technique could be extended to deal with the temporal constraints in the
MAGNET problem, although the bid-graph structure may be of value.

One of the problems with combinatorial auctions is that they are nearly
always run in a single round sealed-bid format, and this is the format MAG-
NET uses. Parkes and Ungar [48] have shown how to organize multiple-round
combinatorial auctions. Another problem is that the individual items in a com-
binatorial auction are individual items; there is no notion of quantity. MAGNET

7 Under the “free disposal” assumption, the goal is to maximize revenue even if this
means failing to allocate all the items at auction.

will eventually need to address this. This limitation is overcome in [49] for sim-
ple items without side constraints. The addition of precedence constraints would
seriously complicate their procedure, and it has not yet been attempted.

5.3 Deliberation scheduling

The principal reason we are interested in search performance is because the
search is embedded in a real-time negotiation scenario, and time must be allo-
cated to it before bids are received, and therefore before the exact dimensions
of the problem are known. In [50], deliberation scheduling is done with the aid
of anytime and contract algorithms, and performance profiles. An anytime al-
gorithm is one that produces a continuously-improving result given additional
time, and a contract algorithm is one that produces a result of a given quality
level in a given amount of time, but may not improve given additional time. The
best winner-determination algorithms we know of for the MAGNET problem
have marginal anytime characteristics, and we know of no applicable contract-
type algorithms. In fact, [12] presents an inapproximability result for the winner-
determination problem, leading us to believe that there may not be an acceptable
contract algorithm.

One way to think about deliberation scheduling is to assign the time required
for deliberation a cost, and then to balance the cost of deliberation against the
expected benefit to be gained by the results of the deliberation. This is the
approach taken in [51]. However, much of this analysis assumes that there is
a “default” action or state that can be used or attained without spending the
deliberation effort, and that there is a clear relationship between the time spent
in deliberation and the quantifiable quality of the result. In the MAGNET case,
the alternative to deliberation is to do nothing.

6 Conclusions

We have examined the problem of rational economic agents who must negotiate
among themselves in a market environment in order to acquire the resources
needed to accomplish their goals. We are interested in agents that are self-
interested and heterogeneous, and we assume that a plan to achieve an agent’s
goal may be described in the form of a task network, containing task descrip-
tions, precedence relationships among tasks, and time limits for individual tasks.
Negotiation among agents is carried out by holding combinatorial reverse auc-
tions in a marketplace, in which a customer agent offers a task network in the
form of a request for quotes (RFQ). Supplier agents may then place bids on
portions of the task network, each bid specifying the tasks they are interested in
undertaking, durations and time limits for those tasks, and a price for the bid as
a whole. The presence of temporal and precedence constraints among the items
at auction requires extensions to the standard winner-determination procedures
for combinatorial auctions, and the use of the enhanced winner-determination

procedure within the context of a real-time negotiation requires us to be able to
predict its runtime when planning the negotiation process.

There are a number of real-world business scenarios where such a capability
would be of value. These include flexible manufacturing, mass customization,
travel arrangement, logistics and international shipping, health care resource
management, and large-scale systems management. Each of these areas is char-
acterized by limited capabilities and suboptimal performance, due at least in
part to the limits imposed by human problem-solving capabilities. In each of
these areas, a general ability to coordinate plans among multiple independent
suppliers would be of benefit, but does not exist or is not used effectively be-
cause of an inability to solve the resulting combinatorial problems. The use of
extended combinatorial auctions such as we propose is one approach to solving
these problems. There are many difficulties yet to be overcome before this vi-
sion can be realized, however, not the least of which is that such auction-based
markets would not be effective without wide adoption of new technology across
an industry, and a willingness to delegate at least some level of autonomy and
authority to that new technology.

We have designed and implemented a testbed, which we call MAGNET for
Multi-AGent NEgotiation Testbed, to begin exploring and testing this vision. It
includes a customer agent, a rudimentary market infrastructure, and a simple
simulation of a population of supplier agents. The customer agent implementa-
tion is designed so that virtually all behaviors can be specified and implemented
in terms of responses to events. Events can be external occurrences, internal state
changes, or the arrival of a particular point in time. The MAGNET software
package is available to the research community under an open-source license.

When a goal arises, the agent and its principal must develop a plan, in
the form of a task network. Once a plan is available, a bid-process plan must
be developed to guide the negotiation process. The bid-process plan specifies
which tasks are to be offered in which markets, allocates time to the bidding
process and to the plan execution, and may split the bidding into phases in
order to mitigate risk. For each bidding step in the bid-process plan, time must
be allocated to the customer to compose its RFQ, to the supplier to compose
bids, and to the customer to evaluate bids. For each auction episode specified in
the bid-process plan, a RFQ must be composed. The RFQ specifies a subset of
tasks in the task network, and for each task, it specifies a time window within
which that task must be accomplished. The setting of time windows is critical,
because it influences the likelihood that bidders will bid, the prices bidders are
likely to charge, and the difficulty of the resulting winner-determination process.
If the time windows specified in the RFQ allow task precedence relationships
to be violated, then the winner-determination process will need to choose a set
of bids that can be composed into a feasible schedule. Once the RFQ has been
issued and bids received, the agent must determine winners. We have described
an optimal algorithm for determining winners based on an IDA* framework.

Because the winner-determination problem must be solved within a prede-
termined period of time, it is important to have a clear idea of how much time

to allocate to it, and to know what parameters to use in predicting its run time.
We therefore conducted a series of experiments to characterize the performance
of our winner-determination method over a variety of problem sizes and shapes.
The goal was to determine probability distributions, so that we could allocate
the time necessary to achieve a known probability of solving the problem. We
found that the lognormal distribution was a good model of search performance.

Much work remains to be done before the vision of the MAGNET project is
fully realized. Some of that work, particularly with respect to the supplier agent
and its decision processes, is already under way by other members of the team.

With respect to the customer agent, many of the decision processes outlined
in Section 2 still need to be worked out and tested. The present work has re-
sulted in models for the auction winner-determination problem and the time that
must be allocated to it. For the remainder of the decisions, we need models that
will maximize the expected utility of the agent or its principal. These include
composing the plan, developing the bid-process plan, allocating time to the de-
liberation processes of the customer and suppliers, balancing negotiation time
against plan execution time, setting the time windows in the RFQ, scheduling
the work in preparation for awarding bids, and dealing with unexpected events
during plan execution. Babanov et al. [5, 52] have addressed the problem of set-
ting time windows in the customer’s RFQ.

The language we currently use for plans and bids treats tasks as simple
atomic objects, without attributes. There are many real-world problems in which
attributes are important, both for specifying tasks and for expressing offers in
bids. Examples include colors, quantities, dimensions, and quality attributes. In
addition, many real-world operations operate on a “flow” basis. This includes the
wine-making example we used in Chapter 2, in which the precedence between
filling bottles and applying labels would normally be applied bottle-by-bottle,
and not at the batch level. In addition, the expressivity of our bidding language
is limited. A number of proposals have been made for more expressive bidding
languages in combinatorial auctions [27, 4]. Bidding can also be done with ora-

cles, which are functions passed from bidder to customer that can be evaluated
to produce bid conditions. Some features of a more expressive bidding language
would likely have minimal impact on the winner-determination process (param-
eterized quality values, for example), while others, including the use of oracles,
could require wholesale re-invention.

References

1. Collins, J., Tsvetovat, M., Mobasher, B., Gini, M.: MAGNET: A multi-agent
contracting system for plan execution. In: Proc. of SIGMAN, AAAI Press (1998)
63–68

2. Collins, J., Bilot, C., Gini, M., Mobasher, B.: Mixed-initiative decision support
in agent-based automated contracting. In: Proc. of the Fourth Int’l Conf. on
Autonomous Agents. (2000) 247–254

3. Nisan, N.: Bidding and allocation in combinatorial auctions. Technical report,
Institute of Computer Science, Hebrew University (2000)

4. Boutilier, C., Hoos, H.H.: Bidding languages for combinatorial auctions. In: Proc.
of the 17th Joint Conf. on Artificial Intelligence. (2001) 1211–1217

5. Babanov, A., Collins, J., Gini, M.: Asking the right question: Risk and expectation
in multi-agent contracting. Artificial Intelligence for Engineering Design, Analysis
and Manufacturing 17 (2003) 173–186

6. Collins, J., Jamison, S., Gini, M., Mobasher, B.: Temporal strategies in a multi-
agent contracting protocol. In: AAAI-97 Workshop on AI in Electronic Commerce.
(1997)

7. Hillier, F.S., Lieberman, G.J.: Introduction to Operations Research. McGraw-Hill
(1990)

8. Parkes, D.C., Ungar, L.H.: An auction-based method for decentralized train
scheduling. In: Proc. of the Fifth Int’l Conf. on Autonomous Agents, Montreal,
Quebec, ACM Press (2001) 43–50

9. Collins, J., Gini, M.: An integer programming formulation of the bid evaluation
problem for coordinated tasks. In Dietrich, B., Vohra, R.V., eds.: Mathematics of
the Internet: E-Auction and Markets. Volume 127 of IMA Volumes in Mathematics
and its Applications. Springer-Verlag, New York (2001) 59–74

10. Collins, J., Bilot, C., Gini, M., Mobasher, B.: Decision processes in agent-based
automated contracting. IEEE Internet Computing 5 (2001) 61–72

11. Sandholm, T.: An algorithm for winner determination in combinatorial auctions.
In: Proc. of the 16th Joint Conf. on Artificial Intelligence. (1999) 524–547

12. Sandholm, T.: Algorithm for optimal winner determination in combinatorial auc-
tions. Artificial Intelligence 135 (2002) 1–54

13. Korf, R.E.: Depth-first iterative deepening: An optimal admissible tree search.
Artificial Intelligence 27 (1985) 97–109

14. Russell, S.J., Norvig, P.: Artificial Intelligence: A Modern Approach. Prentice-Hall,
Upper Saddle River, NJ (1995)

15. Collins, J., Demir, G., Gini, M.: Bidtree ordering in IDA* combinatorial auction
winner-determination with side constraints. In Padget, J., Shehory, O., Parkes,
D., Sadeh, N., Walsh, W., eds.: Agent Mediated Electronic Commerce IV. Volume
LNAI2531., Springer-Verlag (2002) 17–33

16. Law, A.M., Kelton, W.D.: Simulation Modeling and Analysis. Second edn.
McGraw-Hill (1991)

17. Sandholm, T., Suri, S., Gilpin, A., Levine, D.: CABOB: A fast optimal algorithm
for combinatorial auctions. In: Proc. of the 17th Joint Conf. on Artificial Intelli-
gence, Seattle, WA, USA (2001) 1102–1108

18. Rosenschein, J.S., Zlotkin, G.: Rules of Encounter. MIT Press, Cambridge, MA
(1994)

19. Sandholm, T.W., Lesser, V.: On automated contracting in multi-enterprise man-
ufacturing. In: Distributed Enterprise: Advanced Systems and Tools, Edinburgh,
Scotland (1995) 33–42

20. Sandholm, T.W.: Negotiation Among Self-Interested Computationally Limited
Agents. PhD thesis, Department of Computer Science, University of Massachusetts
at Amherst (1996)

21. Pollack, M.E.: Planning in dynamic environments: The DIPART system. In Tate,
A., ed.: Advanced Planning Technology. AAAI Press (1996)

22. Wilkins, D.E., Myers, K.L.: A multiagent planning architecture. In: Proc. Int’l
Conf. on AI Planning Systems. (1998) 154–162

23. Cox, J.S., Durfee, E.H., Bartold, T.: A distributed framework for solving the
multiagent plan coordination problem. In: Autonomous Agents and Multi-Agent
Systems. (2005) 821–827

24. Wellman, M.P., Walsh, W.E., Wurman, P.R., MacKie-Mason, J.K.: Auction pro-
tocols for decentralized scheduling. Games and Economic Behavior 35 (2001)
271–303

25. Varian, H.R., MacKie-Mason, J.K.: Generalized vickrey auctions. Technical report,
University of Michigan (1995)

26. Walsh, W.E., Wellman, M., Ygge, F.: Combinatorial auctions for supply chain
formation. In: Proc. of ACM Conf on Electronic Commerce (EC’00). (2000) 260–
269

27. Nisan, N.: Bidding and allocation in combinatorial auctions. In: Proc. of ACM
Conf on Electronic Commerce (EC’00), Minneapolis, Minnesota, ACM SIGecom,
ACM Press (2000) 1–12

28. Bakos, Y.: The emerging role of electronic marketplaces on the Internet. Comm.
of the ACM 41 (1998) 33–42

29. Chavez, A., Maes, P.: Kasbah: An agent marketplace for buying and selling goods.
In: Proc. of the First Int’l Conf. on the Practical Application of Intelligent Agents
and Multi-Agent Technology, London, UK, Practical Application Company (1996)
75–90

30. Rodriguez, J.A., Noriega, P., Sierra, C., Padget, J.: FM96.5 - A Java-based elec-
tronic auction house. In: Second Int’l Conf on The Practical Application of Intel-
ligent Agents and Multi-Agent Technology (PAAM’97), London (1997) 207–224

31. Sycara, K., Pannu, A.S.: The RETSINA multiagent system: towards integrating
planning, execution, and information gathering. In: Proc. of the Second Int’l Conf.
on Autonomous Agents. (1998) 350–351

32. Wellman, M.P., Wurman, P.R.: Market-aware agents for a multiagent world.
Robotics and Autonomous Systems 24 (1998) 115–125

33. Tsvetovatyy, M., Gini, M., Mobasher, B., Wieckowski, Z.: MAGMA: An agent-
based virtual market for electronic commerce. Journal of Applied Artificial Intel-
ligence 11 (1997) 501–524

34. Faratin, P., Sierra, C., Jennings, N.R.: Negotiation decision functions for au-
tonomous agents. Int. Journal of Robotics and Autonomous Systems 24 (1997)
159–182

35. Wurman, P.R., Wellman, M.P., Walsh, W.E.: The Michigan Internet AuctionBot:
A configurable auction server for human and software agents. In: Second Int’l
Conf. on Autonomous Agents. (1998) 301–308

36. Collins, J., Arunachalam, R., Sadeh, N., Ericsson, J., Finne, N., Janson, S.: The
supply chain management game for the 2005 trading agent competition. Techni-
cal Report CMU-ISRI-04-139, Carnegie Mellon University, Pittsburgh, PA 15213
(2004)

37. Stone, P., Schnapire, R.E., Csirik, M.L.L.J.A., McAllester, D.: ATTac-2001: A
learning, autonomous bidding agent. Submitted to the Eigtheenth National Con-
ference on Artificial Intelligence (AAAI-2002) (2002)

38. Sycara, K., Decker, K., Williamson, M.: Middle-agents for the Internet. In: Proc.
of the 15th Joint Conf. on Artificial Intelligence. (1997) 578–583

39. Sycara, K., Klusch, M., Widoff, S., Lu, J.: Dynamic service matchmaking among
agents in open information environments. SIGMOD Record (ACM Special Interests
Group on Management of Data) 28 (1999) 47–53

40. Fox, M., Barbuceanu, M., Teigen, R.: Agent-oriented supply-chain management.
The International Journal of Flexible Manufacturing Systems 12 (2000) 165–188

41. Chandra, C., Tumanyan, A.: Supply chain system taxonomy: development and
application. In: Proc. 12th Annual Industrial Engineering Research Conference
IERC-2003, Portland, Oregon, USA (2003)

42. McAfee, R., McMillan, P.J.: Auctions and bidding. Journal of Economic Literature
25 (1987) 699–738

43. de Vries, S., Vohra, R.: Combinatorial auctions: a survey. Technical report, Tech-
nische Universität München (2001)

44. Rothkopf, M.H., Pekec̆, A., Harstad, R.M.: Computationally manageable combi-
natorial auctions. Management Science 44 (1998) 1131–1147

45. Sandholm, T., Suri, S.: Bob: Improved winner determination in combinatorial
auctions and generalizations. Artificial Intelligence 145 (2003) 33–58

46. Hoos, H.H., Boutilier, C.: Solving combinatorial auctions using stochastic local
search. In: Proc. of the Seventeen Nat’l Conf. on Artificial Intelligence. (2000)
22–29

47. Andersson, A., Tenhunen, M., Ygge, F.: Integer programming for combinatorial
auction winner determination. In: Proc. of 4th Int’l Conf on Multi-Agent Systems.
(2000) 39–46

48. Parkes, D.C., Ungar, L.H.: Iterative combinatorial auctions: Theory and practice.
In: Proc. of the Seventeen Nat’l Conf. on Artificial Intelligence. (2000) 74–81

49. Leyton-Brown, K., Shoham, Y., Tennenholtz, M.: An algorithm for multi-unit com-
binatorial auctions. In: Proc. of the Seventeen Nat’l Conf. on Artificial Intelligence,
Austin, Texas (2000)

50. Greenwald, L., Dean, T.: Anticipating computational demands when solving time-
critical decision-making problems. In Goldberg, K., Halperin, D., Latombe, J.,
Wilson, R., eds.: The Algorithmic Foundations of Robotics. A. K. Peters, Boston,
MA (1995)

51. Boddy, M., Dean, T.: Decision-theoretic deliberation scheduling for problem solv-
ing in time-constrained environments. Artificial Intelligence 67 (1994) 245–286

52. Babanov, A., Collins, J., Gini, M.: Harnessing the search for rational bid schedules
with stochastic search and domain-specific heuristics. In: Proc. of the Third Int’l
Conf. on Autonomous Agents and Multi-Agent Systems, New York, AAAI Press
(2004) 269–276

