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Abstract

We discuss a solution to the winner determination problem which takes into account not
only costs but also risk aversion of the agent that accepts the bids. We are interested in bids for
tasks that have time and precedence constraints. We develope an equivalent unit approach to the
group of tasks to analyze the system and use Expected Utility Theory as the basic mechanism
for decision-making. Our theoretical and experimental analysis shows that Expected Utility is
especially useful for choosing between cheap-but-risky and costly-but-safe bids. Moreover, we
show how bids with similar costs and similar probabilities of being successfully completed but
different time windows can be efficiently selected or rejected.
Keywords: Winner Determination, Risk, Expected Utility, Automated Auctions, Multi-agent
Contracting,

1 Introduction

Parallel to the fact that auctions are becoming the basic negotiation tools for e–commerce systems,
solving the winner determination problem in auctions has become an important problem. Generally,
many winner determination algorithms approach the problem as a cost minimization problem (or,
equivalently, profit maximization when the auctioneer is the buyer) [Sandholm, 2002, Collins et
al., 2002a]. However, we know that cost is not the only factor playing a rôle in making decisions.
Usually, companies tend to work with prequalified suppliers whose quality, delivery performance,
and flexibility influence the long-term relationships among them.

There are further issues concerning how one deals with risk and uncertainty. Suppose you have
planned a job in which several tasks should be completed with time precedence relations. At the
winner determination stage you have to select the winning bids, but you don’t know whether all
suppliers will finish their tasks on time. If any of them fails to finish, then your whole plan will
probably fail. However, you will still have to pay the costs of all the tasks which precede the one
that failed.

Uncertainty depends not only on supplier reliability but also on the choice of the schedule. A
schedule with slack between tasks and with wider time windows is less risky than a tight schedule,
but the extra time taken can reduce the value of the final product. Although we may use a
penalty for late or unfinished tasks to decrease our loss, this is not a complete solution to deal with

∗Work supported in part by the National Science Foundation, awards NSF/IIS-0084202 and NSF/EIA-9986042

1



uncertainty. The main issue is that there is always some probability that suppliers may not finish
on time, and you have to consider that uncertainty in your winner determination process.

In addition to uncertainty, there is another important issue concerning how risk–averse or risk–
seeking you are. While you prefer cheap but more risky bids, someone can prefer more expensive
but less risky ones. So, winner determination should also consider the risk tolerance.

In our work, what complicates winner determination further is the fact that tasks have prece-
dence constraints and that all tasks have to be completed. Winner determination for combinatorial
tasks scales exponentially with the number of tasks, and at best polynomially with the number of
bids [Sandholm, 2002]. However, temporal constraints make the winner-determination problem to
scale exponentially in the number of bids as well [Collins, 2002].

In this work, we focus on the MAGNET (Multi-AGent NEgotiation Testbed) [Collins et al.,
2002b] system, but the results are applicable to other systems as well. MAGNET supports agents
in negotiation of contracts for tasks that have temporal and precedence constraints. In MAGNET
there are two agent roles: the customer and the supplier. A customer is an agent who needs
resources beyond its direct control to accomplish its goal. A supplier is an agent who can provide
resources and services upon request, for specified prices, over specified time periods. MAGNET
agents participate in first-price, sealed-bid, reverse combinatorial auctions.

To model this concept we use Expected Utility Theory (EUT) [Biswas, 1997], which describes
human economic decision-making. We take into account not only costs, time, and precedence
constraints, but also the risk posture of the agent. To accomplish this we formulate the winner
determination problem as a non-linear, mixed integer programming problem with the objective of
maximizing the Expected Utility (EU) of the customer agent.

In Section 2 we show how to compute EU when there are time and precedence constraints
among tasks. In Section 3 we show how to transform a task network into an equivalent one and
how to compute its EU. Then, in Section 4 we propose a formulation of the winner determination
problem as a nonlinear mixed integer programming. In Section 5 we show experimental results.
Section 6 summarizes the related work. Finally, we conclude the work in Section 7.

2 Computing Expected Utility for Tasks with Time and Prece-

dence Constraints

Utility theory has proven useful in a wide collection of applications, such as consumer demand, cor-
porate management, portfolio analysis, land reclamation, and city-airport development [Goicoechea
et al., 1982], just to name a few.

What EU does is to accomplish the decision-making process by using probabilities and an utility
curve, U(W ), which relates a given gain level W to the utility U . Accordingly, for n given choices
of outcomes, the expected utility is

E(U) =
n
∑

i=1

U(Wi) Pi (1)

where Pi is the probability that the outcome Wi will occur. Wi is the resulting gain for the
decision–maker if the i–th outcome is realized.

Suppose your duty is to complete a set of tasks. It is the responsibility of your customer agent
to use an auction process to obtain a set of commitments for resources, that can be composed into
a feasible schedule with maximum expected utility.
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Figure 1: Task network

We represent the set of tasks as a task network, which consists of a set of nodes and the temporal
constraints among them. A sample task network is shown in Figure 1

To compute EU, we treat the problem as a set of ordered task completion events. Each event i
has probability pi of being completed successfully in the time allocated. At the time of completion
of each event, the customer must pay some cost ci to the supplier. After completion of the last
task, the customer gains the benefit of plan completion V . Once a task starts, the customer is
liable for its full cost at completion, regardless of whether, in the meantime, the plan as a whole
has been abandoned due to the failure of some task. If any task fails to complete we ignore any
residual value of the work completed.

Suppose there are only two tasks which have to be completed sequentially. Let their probability
and costs be p1, p2, c1, and c2 respectively. There are 3 different situations that can occur after
the first task starts:

• Task1 remains uncompleted with probability P = 1−p1, you pay nothing, your gain is W = 0,
the plan is abandoned (Task2 doesn’t need to start).

• Task1 is completed, but Task2 is not, with overall probability P = p1.(1− p2). You pay just
the cost of Task1, c1, your gain is W = c1, the plan is abandoned.1.

• Both Task1 and Task2 are completed with overall probability P = p1.p2. You pay the cost of
both tasks, c1 + c2, your gain is W = V + c1 + c2, the plan is completed, you gain the benefit
of completion of the plan.

To calculate EU as in (1) we use the set of probability and gain pairs, (Pi,Wi), i = 1, 2, 3 Clearly,
the construction of these pairs depends on the structure of the task network and on the schedule
of the tasks. The algorithm to compute them is reported in [Babanov et al., 2002].

We collect the preferences of the customer agent in a von Neumann-Morgenstern utility func-
tion U , assuming constant risk-aversion coefficient r, which equals −U ′′/U ′ [von Neumann and
Morgenstern, 1947]. We take the utility function to have the form U(Wi) = −e−rWi .

3 Constructing an Equivalent Task Network to Compute EU

For analyzing the network, it is advantageous to reduce sequential and parallel task groups into
equivalent simpler units. We expect that such a reduction would give a clearer interpretation of
the system, such as the dependence of the EU on changes in price, or probability of success of a
task, or different task networks. The topology of tasks are illustrated in Figure 2 for sequential,
parallel and parallel–sequential cases. Below we discuss them separately.

1Since all costs are defined in terms of gain all of them are negative
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3.1 Sequential Tasks

We start with the case where there are n tasks to be completed, one after the other, in a sequential
manner, as shown in Figure 2. The EU for three sequential tasks is given by

eq tt

eq

n

n−1

1

eq

t

1

n−1

1

n

n n−1

Figure 2: A typical task networks for sequential (top), parallel (middle) and parallel–sequential
(bottom) cases.

EU = −
(

1− p3 + p3 (1− p2) e−rc3 + p3p2 (1− p1) e−r(c3+c2) + p3p2p1e
−r(V +c3+c2+c1)

)

(2)

which equals the more suggestive form

EU = −
(

1− p3 + p3e
−rc3

(

1− p2 + p2e
−rc2

(

1− p1 + p1e
−r(V +c1)

)))

. (3)

This implies that for n sequential tasks the EU follows form the difference equation

S(k) = 1− pk + pke
−rck S (k − 1) (4)

where k = 1, 2, · · · , n, S(0) = 1 (if the n–th task is the final task of the network S(0) = e−rV ), and
EU(n) = −S(n). As a simple application of (4) consider n task with common probability p and
cost c, which gives

EU(n) = −





ec r
(

1− p +
(

−e−c n r + e−r (c n+V )
)

pn +
(

e−c n r − e−r (c+c n+V )
)

p1+n
)

ec r − p



 . (5)

In general the probability pi and cost ci are different for different tasks, so (4) becomes a variable-
coefficient difference equation. Then the general solution can be found as

EU(n) = −

(

Πn
k=1pke

−rck

n
∑

l=1

1− pl

Πl
m=1pme−rcm

)

(6)
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The fact that n sequential tasks are equivalent to a single unit with probability peq and cost ceq

can be seen from the following relations

peq = pn and ceq = cn −
1

r
log{−EU(n− 1)} (7)

In maximizing the EU, as well as in ordering the tasks, one can follow simple rules which are
evident from the difference equation (4). First of all, one recalls that pi < 1 and e−rci > 0 so that
the quantity fi = 1 − pi + pie

−rci is always positive, hence the EU is always negative. Then, it is
straightforward to see that to maximize EU, if there are more than one bid for the i–th task within
the same time slacks, one then has to choose (pi, ci) among all bids which minimizes fi. Among
all bids for task i we choose the one with the lowest cost for identical probabilities, and we choose
the one having highest probability for identical costs. All these observations are supported by the
form of fi.

If there are no time constraints on the order of the tasks, forming a sequential task network can
be done as follows. For two distinct tasks with identical probabilities the one having the lowest cost
must come first. On the other hand, when the costs are identical, the one with lowest probability
must be done first. In the other cases, one requires −pi + pi(1 − pj)e

−rci < −pj + pj(1 − pi)e
−rcj

for task i to precede task j.

3.2 Parallel Tasks

As suggested by Figure 2, the EU of two parallel tasks takes the form

EU = (1− p1)p2e
−rc2 + p1(1− p2)e

−rc1 + (1− p1)(1− p2) + p1p2e
−r(c1+c2) (8)

A direct evaluation of (8) reveals that the EU of n parallel tasks can be obtained by solving the
difference equation:

P (k) =
(

1− pk + pke
−rck

)

P (k − 1) (9)

where k = 1, 2, · · · , n, P (0) = 1, and EU(n) = −P (n). A solution of (9) reduces a groups of parallel
tasks into a single unit with probability peq and cost ceq:

peq = 1−Πn
i=1 (1− pi) and ceq = −

1

r
log{−

EU(n) + 1− peq

peq
} (10)

Then, to maximize the EU, one has to choose (pi, ci) among all bids for the i–th task which
minimizes fi = 1− pi + pie

−rci . In general, the observations made for the sequential case are also
valid here.

3.3 Parallel–Serial Tasks

The configuration illustrated in the bottom of Figure 2, differs from the other two in terms of the
equivalent probabilities and costs. A straightforward analysis reduces such a combination to a pure
sequential combination, where the parallel tasks are reduced to an equivalent unit, via the following
rules:

peq = 1−Πn
i=1

(

1− pi + pie
−rci

)

+Πn
i=1pie

−rci

ceq = −
1

r
log{−

Πn
i=1pie

−rci

peq
} . (11)
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3.4 Reduction of Hybrid Networks

In this section we will use the aforementioned rules to find the equivalent unit for a general hybrid
network of tasks. In discussing the reduction of a hybrid structure we will refer to Figure 3 which
shows which tasks are combined at each step via encircling them. First, one combines the sequential
tasks, then the parallel ones in the middle branch, and finally the resulting sequential ones, following
the rules described in last three subsections. In this picture the place where V is to be inserted is
clearly the single-unit eq network at the very end of the reduction process.

eq1

eq2

eq3

eq

Figure 3: A sample task network for the illustration of the reduction to a single equivalent unit.

4 Winner Determination Formulation

As noted before, customer agents do a first-price, sealed-bid reverse auction. A bid includes a set
of tasks and a price, along with timing data, including duration, and the earliest and latest times
the task(s) may be started. Information on the probabilities the completion of the tasks can be
obtained from market aggregate data.

In previous work, we have developed various algorithms for winner determination in MAGNET,
including the one based on Integer Programming [Collins and Gini, 2001], IDA* using bidtree order-
ing [Collins et al., 2002a], and Simulated Annealing. Those algorithms use cost as the main criterion
for choice, and allow for combinatorial bids. Systematic studies to characterize the performance of
those winner determination algorithms in terms of speed, scalability, and predictability have been
reported in [Collins, 2002]. Speed and scalability are specially important, because combinatorial
auction winner determination is known to be NP-complete and inapproximable [Sandholm, 2002].

We are interested in choosing bids that maximize the customer agent Expected Utility and that
satisfy the temporal and precedence constraints. To formulate the winner determination problem,
we start by introducing some notations and concepts. A task network consists of a set S of tasks
with elements sj , j = 1 · · ·m. Each task sj has a precedence set Pj = {sj′ |sj′ ≺ sj}, the set of
tasks sj′ that must be completed before sj is started. At the conclusion of the bidding process, we
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have a set B of bids with elements bi, i = 1 · · ·n. Each bid bi specifies a set of tasks Si and a cost
ci. For each task si

j , a bid bi that includes the task may specify an early start time ei
j , a late start

time f i
j , and a duration di

j . Additionally, we need to know the probability pi
j that task si

j will be
completed in the proposed time duration.

To formulate the winner determination problem it is necessary to introduce the main decision
variable xi which is associated with each bid bi:

xi =

{

1 if bi is accepted (winner)
0 otherwise

(12)

Although in a combinatorial auction each bid has a total cost for the entire set of tasks, we assign
the total cost to the finishing task of a bid and give zero cost to all the preceding ones. Namely,
we assign costs such that ci

j = 0 if the task j is not the finishing one, and ci
j = ci if the task j is

the last one (We assume that there is no payment until all tasks of a given bid finish).
To use EU for winner determination, it is useful to regard each bid as a task of probability

(pi
j)

xi and cost xic
i
j , where their time parameters determine the structure.

Each of the tasks orderings will yield a different network structure and a different value for EU .
In the winner determination process, to track these different orderings and compute the related EU
we use a continuous variable lij , which represents the start time of a task in each bid. We have to

construct the bid structure and compute the associated EU as lij varies in between the early and
late start limits, and the variable xi decides if the bid under consideration is rejected or accepted.

In solving the winner determination problem one must take into account the following con-
straints on the fundamental variables lij and xi:

• Bid Selection:

xi ∈ {0, 1} ∀i = 1 · · ·n (13)

which means that a bid is either accepted or rejected.

• Start Time Limits:

ei
j ≤ lij ≤ f i

j ∀j = 1 · · ·m, ∀i = 1 · · ·n, (14)

which ensures that the start time of a task is bounded by its early and late start times.

• Coverage:
∑

i|sj∈Si

xi = 1 ∀j = 1 · · ·m (15)

which means that each task must be included exactly once.

• Feasibility

xil
i
j ≥ xi′(l

i′

j′ + di′

j′)−M(1− xi)

∀j = · · ·m, ∀i|sj ∈ Si, ∀i
′|sj′ ∈ (Si′ ∩ Pj) (16)

which guarantees both locally and globally that each task starts after the completion of its
immediate predecessors. Here, M is a “large” number, and the last term M(1 − xi) is used
to make the constraint satisfied in the case where xi = 0.

The number of constraints generated by these formulas is highly variable, depending on the
length of the longest path in the task network, and on the detailed composition of the bids. Details
on how to derive similar constraints for winner determination of combinatorial bids using Integer
Programming are given in [Collins and Gini, 2001].
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5 Experimental Results

In this Section, we show the results of a numerical study of winner determination employing the
EU theory we have presented.

We simulate a bidding cycle by introducing different sets of bids, each for different experiments.
Table 1 shows these set of bids. Each row of the table corresponds to a specific bid, and includes
the corresponding task, early and late start times, duration, cost, and probability of success.

The task network we are using in these experiments is the one shown earlier in Figure 1. The
network has the following precedence relations: s1 ≺ (s2, s3, s4), (s2, s5) ≺ s6, and (s3, s4) ≺ s5.

Experiment 1: In this experiment we use only the bids of Set-1. Each bid includes just one task
and in the winning–bid structure all tasks are sequential.

Set Name Task Early Start Time Late Start Time Duration Cost Probability

b1 s1 0 3 30 2 0.9
b2 s1 1 3 10 20 0.6
b3 s2 12 15 10 30 0.6
b4 s3 23 25 5 60 0.4

1 b5 s4 30 35 5 35 0.8
b6 s4 30 35 5 35 0.6
b7 s2 12 15 10 35 0.9
b8 s2 12 15 5 90 0.1
b9 s3 40 45 5 60 0.4
b10 s5 65 70 15 50 0.8
b11 s6 75 95 5 50 0.9

2 b12 s3 32 33 6 60 0.4

s5 65 68 12 0.8
b13 s6 80 95 5 100 0.9

s4 15 18 12 0.8
3 b14 s2 8 12 80 1

s3 15 17 10 50 0.9

Table 1: A bidding cycle. The corresponding time, cost, and probability values are shown in the
respective columns.

We arrive at the following results from this experiment:

• Bid b1 is rejected in all cases, since it requires 30 units of time but the bids for task s2 (b3, b7

and b8) must start no later than at time 15; therefore, the choice of b1 violates the precedence
relations. As a result, bidder b2 wins task s1.

• Task s4 is covered by bids b5 and b6 with identical costs but different probabilities. As
expected, bid b5 wins, thanks to its higher chance of completing the task.

• Task s2 is covered in b3, b7 and b8. Obviously, bid b8 loses due to its high cost and rather small
probability of success. Deciding on which bid, b3 or b7, to accept is more complicated and
its solution requires knowledge of the costumer’s risk preferences. Essentially, the customer
must prefer between the costly and less risky and cheap and more risky situations. Here the
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Figure 4: The winner/loser regions for b3 with two different risk-aversion coefficient; (a) r=0.001
and (b) r=0.0001.

risk is parametrized by the risk factor r present in the utility function. Therefore, such a
situation illustrates one of the main uses of EU. Depending on how risk–averse the customer
is, either b3 or b7 wins.

To illustrate the situation, it is useful to perform another experiment and examining the
effects of different risk factors on the winning bids. Depicted in Figure 4 are the winner/loser
regions in the cost–probability plane for bid b3 with respect to b7 for two different risk factors:
r = 0.001 and r = 0.0001. Here, r = 0.001 is for a more risk–seeking customer compared to
the case with r = 0.0001. As the figure shows, for r = 0.001 less likely and cheaper alternatives
are preferred, whereas for r = 0.0001 the customer is more risk–averse and prefers more costly
but more likely bids.

• Bids b4 and b9 both cover task s3, where b4 completes the task before s4 starts, whereas b9

starts task s3 after s4 is completed. Both of these orderings satisfy the feasibility constraints,
and therefore, the winning bid can be decided only after maximizing the EU. In Figure 5, we
show the winner/loser regions in the cost–probability plane for b9 relative to b4 for r = 0.001

The importance of order for bid evaluation can be explained as follows. Suppose that the
bids for s3 and s4 have equal probabilities but different costs. The natural act is that the task
with lower cost must be done first to minimize the total cost in case the plan is abandoned.
On the other hand, if the costs for s3 and s4 are equal but the probabilities are different then
the one with lower probability must be chosen first, again for minimizing the total cost in
case the plan is abandoned. EU supports and realizes both of these observations.

In light of the observations above, the winning bid vector is as follows : X = {0, 1, 0, 0, 1, 0, 1, 0, 1, 1, 1}.

Experiment 2: So far we have illustrated mainly sequential structures, where winning bids
always start one after the other. Now we extend the scenario in Table 1 by adding Set-2 to Set-1.
This means we have a new bid b12, whose time interval coincides with one of the existing bids, but
which covers a different task.

We illustrate the winner/loser regions for b12 in Figure 6. A comparison with Figure 5, show
that the customer, when b12 is included, prefers to use b12 because of its lower costs.

Experiment 3: In this experiment, all three sets including individual and combinatorial bids are
used to determine the winning bids. We compare bids b10 for task s5 and b11 for task s6 versus
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Figure 5: The winner/loser regions for b9 with risk coefficient r=0.001
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Figure 6: The winner/loser regions for b12.

combinatorial bid, b13, for both s5 and s6. In both cases, the tasks s5 and s6 are in sequential
order. In Figure 7 the EU values for each cases are shown for different costs of b13. As seen from
figure, for costs higher than 140 the EU of bids including b13 is lower than the EU of bids including
b10 and b11. Therefore above the cost 140 the bids b10 and b11 are the winning ones. It is useful to
look at Figure 7 from a different perspective. Assume si and si′ are sequential tasks connected to
a network. The EU of the network is computed as

EU = −K

(

1− pi
j + pi

je
−rci

j

(

1− pi′

j′ + pi′

j′e
−r(V +ci′

j′
)
))

(17)

where we took into account the fact that si and si′ are the last two tasks. Here K represents the
contribution of the rest of the network. It is useful to compare the EUs of the two cases:

LHS = −K
(

1− p10
5 + p10

5 e−rc10
5

(

1− p11
6 + p11

6 e−r(V +c11
6

)
))

RHS = −K
(

1− p13
5 + p13

5

(

1− p13
6 + p13

6 e−r(V +c13
5,6)
))

(18)

where LHS refers to individual bids, and RHS to the combinatorial bid for s5 and s6. Whichever
one, LHS or RHS, is larger that bid(s) is the winner(s). Irrespectively of the value of K, one can
determine the winner by checking (18) for different cost and probability values.

As an example, let’s take the parameters from Table 1 and vary the cost of b13. For individual
bids one finds −0.3918K. On the other hand, for combinatorial bids one gets −0.3877K, −0.3910K,
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Figure 7: The EU of bid structure for combinatorial (b13) vs. individual bids (b10 and b11).

−0.3932K for c13
5,6 = 100, 130 and 150, respectively. This simple analysis is sufficient to determine

the winning bids. Indeed, the EU for the combinatorial case falls below that of the individual case
at c13

5,6 = 140, which is in complete agreement with Figure 7. In this way, which is nothing but a
restatement of the equivalent network construction, one can eliminate various bids in a simple way.

The optimization algorithm used in these experiments is a branch and bound algorithm for
nonlinear mixed integer programming. The algorithm has certain limitations which deserve an
explanation. It tends to fix the start time, instead of varying it between the early and late start
times, if the start time happens to be in the feasible region. In principle, one might find new
maxima for EU as the start time changes from the early to the late start time.

6 Related Work

Despite the abundance of work in auctions [Milgrom, 1989], limited attention has been devoted to
auctions over tasks with complex time constraints and uncertainty. Execution uncertainty is studied
in [Porter et al., 2002] where the design of mechanisms is extended from traditional game-theoretic
approaches to take into account not only cost but also probability of failure.

In [Parkes and Ungar, 2001], a method is proposed to auction a shared track line for train
scheduling. The problem is formulated with mixed integer programming, with many domain-specific
optimizations. Time slots are used in [Wellman et al., 2001], where a protocol for decentralized
scheduling is proposed. The study is limited to scheduling a single resource, MAGNET agents
deal with multiple resources. Walsh et al [Walsh et al., 2000] propose a protocol for combinatorial
auctions for supply chain formation, using a game-theoretical perspective. They allow complex
task networks, but do not include time constraints like we do in MAGNET.

Agents in MASCOT [Sadeh et al., 1999] coordinate scheduling with the user. The problem
a MAGNET agent faces is not job-shop scheduling; we are In MAGNET we are not scheduling
resources the agent has, we want to produce a schedule that other agents will execute. The results
reported in [Watson et al., 2002] on the problem difficulty in job-shop scheduling share many simi-
larities to the problems we encounter when solving the winner determination problem in MAGNET.

A commonly used way for handling multiple attributes is to convert qualitative attributes into
price-equivalents, or to define scoring functions for each attribute and combine the scores by using
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a utility function [Bichler, 2001]. Unfortunately, this approach does not extend easily to time and
precedence constraints.

In [Collins et al., 2001] we showed how to compute the marginal expected utility of completing
successfully all the tasks within the duration promised. The formulation was limited to sequential
tasks, but it is the basis for the cost formulation we use in this work.

In other previous work [Babanov et al., 2002] we proposed an approach based on Expected
Utility to compute agent’s preferences over different schedules for the tasks in an RFQ, and proposed
the algorithm for computing the payoff-probability outcomes of different schedules that we are
using here. The major difference is that there we were interested in generating schedules of tasks
to maximize expected utility before any bid is submitted. Here we are maximizing the agent’s
expected utility once the bids have been submitted, in the winner determination process.

7 Conclusions

MAGNET is designed to support negotiation among multiple, heterogeneous, self-interested agents
over the distributed execution of complex tasks. If an agent is to act on behalf of a human decision-
maker in such an environment it must be able to evaluate risk factors in ways that the person will
find reasonable. We believe Expected Utility Theory offers a good framework for doing this.

In this work we have studied the winner determination problem using EU so that not only
cost but also time and risk postures are taken into account. EU proves useful for making decisions
when one must choose between cheap-but-risky and costly-but-safe. Moreover, EU is a powerful tool
for choosing between bids with similar costs and probabilities but different time spans in feasible
regions. The theoretical bases discussed in Section 4 as well as our examples confirm the usefulness
of EU in determining the winning bids.

The maximization of EUT is solved as a nonlinear mixed integer programming problem. While
the continuous variation of the individual start times for each task determines the structure, the
acceptance/rejection of a bid is decided via an integer variable.

Additionally, we show how to find an equivalent task network to compute EU. The calculation
of equivalent units proves useful in reducing a complex network structure into simple units with
known expressions for equivalent costs and probabilities.
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[Collins et al., 2002a] John Collins, Güleser Demir, and Maria Gini. Bidtree ordering in IDA*
combinatorial auction winner-determination with side constraints. In J. Padget, Onn Shehory,
David Parkes, Norman Sadeh, and William Walsh, editors, Agent Mediated Electronic Commerce
IV, volume LNAI2531, pages 17–33. Springer-Verlag, 2002.

[Collins et al., 2002b] John Collins, Wolfgang Ketter, and Maria Gini. A multi-agent negotiation
testbed for contracting tasks with temporal and precedence constraints. Int’l Journal of Elec-
tronic Commerce, 7(1):35–57, 2002.

[Collins, 2002] John Collins. Solving Combinatorial Auctions with Temporal Constraints in Eco-
nomic Agents. PhD thesis, University of Minnesota, June 2002.

[Goicoechea et al., 1982] A. Goicoechea, D.R. Hansen, and L. Duckstein. Multiobjective Decision
Analysis with Engineering and Business Applications. John Wiley & Sons, New York, 1982.

[Milgrom, 1989] Paul Milgrom. Auction and bidding: a primer. Journal of Economic Perspectives,
3(3):3–22, 1989.

[Parkes and Ungar, 2001] David C. Parkes and Lyle H. Ungar. An auction-based method for decen-
tralized train scheduling. In Proc. of the Fifth Int’l Conf. on Autonomous Agents, pages 43–50,
Montreal, Quebec, May 2001. ACM Press.

[Porter et al., 2002] Ryan Porter, Amir Ronen, Yoav Shoham, and Moshe Tennenholtz. Mechanism
design with execution uncertainty. In UAI-02, 2002.

[Sadeh et al., 1999] Norman M. Sadeh, David W. Hildum, Dag Kjenstad, and Allen Tseng. MAS-
COT: an agent-based architecture for coordinated mixed-initiative supply chain planning and
scheduling. In Workshop on Agent-Based Decision Support in Managing the Internet-Enabled
Supply-Chain, at Agents ’99, pages 133–138, 1999.

[Sandholm, 2002] Tuomas Sandholm. Algorithm for optimal winner determination in combinatorial
auctions. Artificial Intelligence, 135:1–54, 2002.

[von Neumann and Morgenstern, 1947] J. von Neumann and O. Morgenstern. Theory of Games
and Economic Behavor. Princeton Univ. Press, Princeton, 1947.

[Walsh et al., 2000] William E. Walsh, Michael Wellman, and Fredrik Ygge. Combinatorial auc-
tions for supply chain formation. In Proc. of ACM Conf on Electronic Commerce (EC’00),
October 2000.

[Watson et al., 2002] Jean Paul Watson, J. Christopher Beck, Adele Howe, and L. Darrell Whitley.
Problem difficulty for tabu search in job-shop scheduling. Artificial Intelligence, 2002.

[Wellman et al., 2001] Michael P. Wellman, William E. Walsh, Peter R. Wurman, and Jeffrey K.
MacKie-Mason. Auction protocols for decentralized scheduling. Games and Economic Behavior,
35:271–303, 2001.

13


