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Abstract

We present a solution to the winner determination problem which takes into account not only
costs but also risk aversion of the agent that accepts the bids, and which works for auctioning
tasks that have time and precedence constraints. We use Expected Utility Theory as the basic
mechanism for decision-making. Our theoretical and experimental analysis shows that Expected
Utility is useful for choosing between cheap-but-risky and costly-but-safe bids. Moreover, we
show how bids with similar costs and similar probabilities of being successfully completed but
different time windows can be efficiently selected or rejected.

Keywords: Winner determination, risk, expected utility, automated auctions, multi-agent con-
tracting.

1 Introduction

Combinatorial auctions in which bidders submit bids on combinations of various items rather
than on an individual item have recently received much attention in the research community (see,
[20], [12]), in parallel with an increase in several application areas, such as auctions for railroad
segments [6], for airspace [2], for allocation of radio spectrum for wireless communications [16], and
for supply chain management [24].

Many business operations require combinations of goods and services, where some sort of
constraint-satisfaction or combinatorial optimization problem needs to be solved in order to as-
semble a “deal.” We envision a new generation of decision support systems that will help potential
partners negotiate mutually beneficial deals. We assume that the primary negotiation paradigm
among these systems will be combinatorial auctions.

The Multi-AGent NEgotiation Testbed (MAGNET) [11] represents a first step in the process of
developing this vision into reality. MAGNET has unique features that allow self-interested agents
to negotiate over complex coordinated tasks, with precedence and time constraints, in an auction-
based market environment. Agents in MAGNET can have two roles, customers and suppliers.
A customer is an agent who needs resources beyond its direct control to accomplish its goal. A
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supplier is an agent who can provide resources and services upon request, for specified prices, over
specified time periods. MAGNET agents participate in first-price, sealed-bid, reverse combinatorial
auctions. With our collaborators in the MAGNET project we have studied different issues, such as
generating schedules for Requests for Quotes (RFQ) [1], evaluating bids to determine the winners
of the auction [9, 7], and increasing the security of the whole multi-agent system [14].

In this paper we focus on winner determination. i.e the process of evaluating bids to determine
the winners of an auction. We solve the winner determination problem by taking into account not
only costs, time, and precedence constraints, but also uncertainty and risk posture of the agent.
The work we present here uses as base for the cost formulation the method we proposed in [8],
where we showed how to compute the marginal Expected Utility of completing successfully all the
tasks within the duration specified in the winning bids. The formulation we used there was limited
to sequential tasks. We extend it here to parallel tasks and to complex task networks. Even though
our work is presented in the context of MAGNET, the results are applicable to any combinatorial
auction system.

Most winner determination algorithms approach the problem as a cost minimization problem
(or, equivalently, profit maximization when the auctioneer is the buyer) [22, 9]. However, we know
that cost is not the only factor which plays a role in making decisions. Companies prefer to work
with pre-qualified suppliers whose quality, delivery performance, and flexibility influence the long-
term relationships between them. Risk and uncertainty and the risk–aversion of the seller also play
a crucial role in decision making.

Winner determination for combinatorial tasks scales exponentially with the number of tasks,
and at best polynomially with the number of bids [22]. More precisely, combinatorial auction
winner determination is known to be NP-complete and inapproximable [22]. Precedence and time
constraints make it to scale exponentially in the number of bids as well [7].

To motivate our work, let’s start with an example. Suppose you need to find resources for a job
which has to be completed in a few days. You start by decomposing the job into several tasks, and
you assign to each task a time window within which it has to be completed. Some tasks have also
precedence constraints between them, that place constraints on the corresponding time windows.
Once you have completed the decomposition into tasks and decided on the time windows, you
generate a Request for Quotes (RFQ), where you specify the tasks and the start and end times for
each individual task. Bids will have to include one or more tasks, a cost, an estimated duration
for completing the task, and a time window within which each task can be started. When you
select the winning bids, you need to estimate how likely is that each supplier will finish its tasks
on time as specified in the bid. If any of them fails to finish, then your whole job will probably
fail. However, you will still have to pay the costs of all the tasks which started before the one that
failed.

Uncertainty depends not only on supplier reliability but also on the choice of the schedule. A
schedule with slack between tasks and with wider time windows is less risky than a tight schedule,
but the extra time taken can reduce the value of accomplishing the job. Although you may decrease
your loss by adding a penalty for late or unfinished tasks, this might not solve completely the prob-
lems caused by uncertainty. The main issue is that there is always some probability that a supplier
will not finish on time, and you have to consider that uncertainty in the winner determination
process. Another important factor is how risk–averse or risk–seeking you are. While you prefer
cheap but more risky bids, someone else may prefer more expensive but less risky ones. So, the
winner determination process should also consider the risk tolerance of the decision maker.
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In summary, if an autonomous agent is to produce decisions that are acceptable to a human
decision-maker, the agent must have the ability to handle decision-making in an environment of
uncertainty and must be able to deal with the risk posture of the person or organization on whose
behalf the agent is acting.

To model this concept we use Expected Utility Theory [5], which describes human economic
decision-making. We take into account not only costs, time, and precedence constraints, but
also uncertainty and the risk posture of the agent. To accomplish this we formulate the winner
determination problem as a non-linear, mixed integer programming problem with the objective of
maximizing the Expected Utility (EU) of the customer agent.

In Section 2 we show how to compute EU when there are time and precedence constraints among
tasks. We show how to transform a task network into an equivalent one and how to compute its EU
in Section 3. We propose a formulation of the winner determination problem as a nonlinear mixed
integer programming in Section 4, and we present preliminary experimental results in Section 5.
Section 7 summarizes the related work. Finally, we conclude the work in Section 8.

2 Computing Expected Utility for Tasks with Time and Prece-

dence Constraints

Utility theory has proven useful in a wide collection of applications, such as consumer demand,
corporate management, portfolio analysis, land reclamation, and city-airport development [13],
just to name a few.

The utility of an agent facing uncertainty is computed as the weighted average of the utility
of each possible state, where the weights are the agent’s estimates of the probability of each state.
Therefore, EU accomplishes the decision-making process by using probabilities and an utility curve,
U(W ), which relates a given gain level W to the utility U . Accordingly, for n given choices of
outcomes, the Expected Utility is

E(U) =
n
∑

i=1

U(Wi) Pi (1)

where Pi is the probability that the outcome Wi will occur. Wi is the resulting gain for the decision–
maker if the i–th outcome is realized. We look at the risk posture of the customer agent using a
von Neumann-Morgenstern utility function U , which assumes a constant risk-aversion coefficient r,
which equals −U ′′/U ′ [23]. We assume the utility function to have the form

U(Wi) = −e−rWi , (2)

but other choices would work as well 1.
We represent the set of tasks as a task network, which consists of a set of nodes, each corre-

sponding to a task, connected by arcs, each corresponding to a temporal constraint between tasks.
A sample task network is shown in Figure 1.

1In this work we deal exclusively with risk-averse agents. Since the agent who runs the auction is always a buyer,
we always consider utility functions with respect to cost instead of gain. We remind the reader that we assume cost to
be a positive number, while gain is the negative of the cost. This function can be generalized to cover both risk-averse
and risk-loving agents: U(Wi) = −sign(r)e−rWi where r is positive (negative) for risk-averse (risk-loving) agents.
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Figure 1: Task network.

To compute EU, following [1], we treat the problem as a set of ordered task completion events.
Each event i has probability pi of being completed successfully in the time allocated. We assume
the probability of completion of a task is independent of other tasks because of different suppliers
and different time windows. We assume that at the time of completion of each task, the customer
must pay some cost ci to the supplier. After completion of the last task, the customer gains the
benefit of job completion V . Once a task starts, the customer is liable for its full cost at completion,
regardless of whether, in the meantime, the job as a whole has been abandoned due to the failure
of some task. If any task fails to complete we ignore any residual value of the work completed.

Suppose there are only two tasks which have to be completed sequentially. Let the probability
of being completed in the time window allocated to each of them be p1 and p2, respectively, and
the costs be c1 and c2. There are 3 different situations that can occur after the first task starts:

• Task1 remains uncompleted with probability P1 = 1 − p1, you pay nothing, your gain is
W1 = 0, the job is abandoned (Task2 doesn’t need to start).

• Task1 is completed, but Task2 is not, with overall probability P2 = p1.(1− p2). You pay just
the cost of Task1, c1, your gain is W2 = −c1, the job is abandoned.

• Both Task1 and Task2 are completed with overall probability P3 = p1×p2. You pay the cost of
both tasks, c1 + c2, and gain the benefit of completing the job. Your gain is W3 = V − c1− c2.

To calculate EU as in Eq. (1) we use the set of probability and gain pairs, (Pi,Wi), i = 1, 2, 3.
Clearly, the construction and the number of these pairs depend on the structure of the task network
and on the schedule of the tasks. The algorithm to compute them is reported in [1].

3 Constructing an Equivalent Task Network to Compute EU

For analyzing the task network, it is advantageous to reduce sequential and parallel task groups into
equivalent simpler units. We expect that such a reduction would allow for a clearer interpretation
of the system, such as to show the dependence of the EU on changes in price, or the probability of
success of a task, or different task networks. The topology of different task networks is illustrated
in Figure 2 for sequential, parallel and parallel–sequential cases.

3.1 Sequential Tasks

We start with the case where there are n tasks to be completed, one after the other, in a sequential
manner, as shown in Figure 2.
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Figure 2: Typical task networks for sequential (top), parallel (middle) and parallel–sequential
(bottom) cases.

Assume that there are three sequential tasks. The corresponding EU is given by

EU = − (1 − p3 + p3 (1 − p2) erc3+ p3p2 (1 − p1) er(c3+c2) + p3p2p1e
−r(V −c3−c2−c1)

)

(3)

which equals the more suggestive form

EU = − (1 − p3 + p3e
rc3 (1 − p2+ p2e

rc2

(

1 − p1 + p1e
−r(V −c1)

)))

. (4)

This implies that for n sequential tasks the EU has the form of a difference equation:

S(k) = 1 − pk + pke
rck S (k − 1) (5)

where k = 1, 2, · · · , n, S(0) = 1 (if the nth task is the final task of the network S(0) = e−rV ), and
EU(n) = −S(n). As a simple application of Eq. (5) consider n tasks with common probability p
and cost c, which gives

EU(n) = −
ec r

(

1 − p +
(

−e−c n r + e−r (c n+V )
)

pn
)

ec r − p
−

(

e−c n r − e−r (c+c n+V )
)

p1+n

ec r − p
. (6)

In general the probability pj and cost cj are different for different tasks, so Eq. (5) becomes a
variable-coefficient difference equation. Then its solution can be found as:

EU(n) = −

(

Πn
k=1pke

rck

n
∑

l=1

1 − pl

Πl
m=1pmercm

)

(7)
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The fact that n sequential tasks are equivalent to a single unit with probability peq and cost ceq

can be seen from the following relations:

peq = pn and ceq = cn −
1

r
log{−EU(n − 1)} (8)

In maximizing the EU, in addition to ordering the tasks, one can follow simple rules which become
evident from the difference equation (5). First of all, one recalls that pj < 1 and ercj > 0 so that
the quantity Fj = 1 − pj + pje

rcj is always positive, hence the EU is always negative. Examining
Eq. (5) one observes that to maximize EU, if there is more than one bid for task j within the same
time window, it is sufficient to choose the pair (pj , cj) among all bids which minimizes Fj no matter
what the value of S(j − 1) is. The proof of this statement is as follows. Suppose that there are two
bids having probability-cost pairs (pi

j, c
i
j), i = 1, 2, for task j, and

1 − p1
j + p1

je
rc1

j < 1 − p2
j + p2

je
rc2

j

F1 < F2 . (9)

Then, if we can show that there exists no A (take it to be S(j − 1)) which satisfies the inequality

1 − p1
j + p1

je
rc1

j A > 1 − p2
j + p2

je
rc2

j A (10)

our assertion will be confirmed. Let us start with Eq. (10), and proceed step by step:

1 − p1
j + p1

je
rc1

j − p1
je

rc1
j + p1

je
rc1

j A > 1 − p2
j + p2

je
rc2

j − p2
je

rc2
j + p2

je
rc2

j A

F1 + p1
je

rc1
j (A − 1) > F2 + p2

je
rc2

j (A − 1)

(p1
je

rc1
j − p2

je
rc2

j )(A − 1) > F2 − F1

(F1 − F2 + (1 − p2
j) − (1 − p1

j))(A − 1) > F2 − F1

(p1
j − p2

j)(A − 1) > −(F1 − F2)A

p1
jA − p2

jA − p1
j + p2

j > −A(1 − p1
j + p1

je
rc1

j − (1 − p2
j + p2

je
rc2

j ))

−p1
j + p2

j > A(−p1
je

rc1
j + p2

je
rc2

j )

A(p1
je

rc1
j − p2

je
rc2

j ) > p1
j − p2

j (11)

This inequality is in manifest contradiction with our starting assumption that F1 < F2, and thus

1 − p1
j + p1

je
rc1j < 1 − p2

j + p2
je

rc2j (12)

hence

1 − p1
j + p1

je
rc1

j A < 1 − p2
j + p2

je
rc2

j A (13)

for all A < 1 (In our task network S(0) = e−rV where V is greater than the sum of all costs, so
that A remains less than 1).

In addition, among all bids for task j we choose the one having the lowest cost for identi-
cal probabilities, and we choose the one having highest probability for identical costs. All these
observations (natural human decisions) are supported by the form of Fj .
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If there are no time constraints on the order of the tasks, forming a sequential task network can
be done as follows. For two distinct tasks with identical probabilities, the one having the lowest cost
must come first. On the other hand, when the costs are identical, the one with lowest probability
must be done first. In the other cases, one requires −pj + pj(1 − pl)e

rcj < −pl + pl(1 − pj)e
rcl for

task j to precede task l.

3.2 Parallel Tasks

As suggested by Figure 2, the EU of two parallel tasks takes the form

EU = (1 − p1)p2e
rc2 + p1(1 − p2)e

rc1 + (1 − p1)(1 − p2) + p1p2e
r(c1+c2) (14)

A direct evaluation of Eq. (14) reveals that the EU of n parallel tasks can be obtained by solving
the difference equation:

P (k) = (1 − pk + pke
rck) P (k − 1) (15)

where k = 1, 2, · · · , n, P (0) = 1, and EU(n) = −P (n). A solution of Eq. (15) reduces a group of
parallel tasks into a single unit with probability peq and cost ceq:

peq = 1 − Πn
i=1 (1 − pi)

ceq = −
1

r
log{−

EU(n) + 1 − peq

peq

} (16)

It is clear that to maximize EU one has to choose the (pj, cj) among all bids given for task j which
minimizes Fj = 1 − pj + pje

rcj . In general, the observations made for the sequential case, that
among all bids for task j we choose the one with the lowest cost for identical probabilities, and we
choose the one with the highest probability for identical costs, are also valid here.

3.3 Parallel–Serial Tasks

The configuration illustrated in the bottom of Figure 2 differs from the other two because it includes
both sequential and parallel tasks.

A straightforward analysis reduces such a combination to a pure sequential combination, where
the parallel tasks are reduced to an equivalent unit, via the following rules:

peq = 1 − Πn
i=1 (1 − pi + pie

rci) + Πn
i=1pie

rci

ceq = −
1

r
log{−

Πn
i=1pie

rci

peq

} . (17)

3.4 Reduction of Hybrid Networks

In this section we will use the rules derived above to find the equivalent for a general hybrid
network. Given an auction where there are multiple bids for a given task, each bid with its own
time window and cost preferences, then the network is established when the time ordering of the
tasks is fixed. In what follows we assume that such an ordering of tasks has already been made
so that there are various branches with parallel or sequential structures. The reduction methods
developed previously are useful in reducing a complex network structure into simple units with
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known expressions for equivalent costs and probabilities. In discussing the reduction of a hybrid
structure we will refer to Figure 3. The reduction process starts at the top of the figure where a
typical network structure is given. As shown there one starts combining the sequential tasks in
the branches encircled by dashed lines. Using the rules derived in Section 3.1 one passes to the
next step shown in the second row of the figure which now contains eq1 and eq2 with respective
equivalent probabilities and costs. Now, using the rules derived in Section 3.3 one can combine the
three parallel tasks in the second row of the figure which are encircled. This gives the equivalent
unit eq3 shown in the third row of the figure. At this stage one should use the rules presented in
Section 3.1 to combine the tree sequential tasks into a single unit eq, as shown in the last row of the
figure. Clearly, eq is expressed in terms of various equivalent probabilities and costs as described
above.

eq1

eq2

eq3

eq

Figure 3: A sample task network for illustrating the reduction to a single equivalent unit.

4 Winner Determination Formulation

As noted before, we are interested in choosing bids that maximize the customer agent Expected
Utility and that satisfy the temporal and precedence constraints of the tasks. Customer agents
do a first-price, sealed-bid reverse auction. A bid includes a set of tasks and a cost, along with
timing data, duration, and the earliest and latest times the task(s) may be started. We assume that
information on the probabilities of completion of the tasks by the supplier/bidder can be obtained
from market aggregate data.

In previous work, we have developed various algorithms for winner determination in MAGNET,
including one based on Integer Programming [10], IDA* using bidtree ordering [9], and Simulated
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Annealing. Those algorithms use cost as the main criterion for choice.
To formulate the winner determination problem, we start by introducing some notations and

concepts. A task network consists of a set S of tasks with elements sj, j = 1 · · ·m. Each task sj has
a precedence set Pj = {sj′ |sj′ ≺ sj}, the set of tasks sj′ that must be completed before sj is started.
At the conclusion of the bidding process, we have a set B of bids with elements bi, i = 1 · · · n. Each
bid bi specifies a set of tasks Si and a cost ci. For each task si

j included in Si, a bid bi may specify

an early start time ei
j , a late start time f i

j , and a duration di
j . Additionally, we need to know the

probability pi
j that task si

j will be completed in the proposed time duration by the bidder of bid bi.
To formulate the winner determination problem it is necessary to introduce the main decision

variable xi which is associated with each bid bi:

xi =

{

1 if bi is accepted (winner)
0 otherwise

(18)

Although in a combinatorial auction each bid has a cost for the entire set of tasks, we assign the
entire cost to the finishing task of a bid and give zero cost to all the preceding ones. Namely, we
assign costs so that ci

j = 0 if the task j is not the finishing one in the set Si, and ci
j = ci if the

task j is the last one. Doing so, we assume that there is no payment until all the tasks of a given
combinatorial bid are completed.

To use EU for winner determination, it is useful to regard each bid as a task of probability
(pi

j)
xi and cost xic

i
j , where their time parameters determine the structure. Clearly, once the xi’s

are determined, the rejected bids will be represented by the set {1, 0} in the bid structure (unit
probability and vanishing cost, no effect on EU), and the ones accepted will have the set {pi

j , c
i
j},

where we recall that xi is either zero or one.
Although there are time precedence relations between some tasks there can be different tasks

orderings which satisfy the precedence constraints. For example, consider the network which has
the following precedence relations: s1 ≺ (s2, s3, s4), (s2, s5) ≺ s6, and (s3, s4) ≺ s5. According to
its start time, s4 can be sequential to s3 or parallel to s3. Figure 1 shows the task network when
s4 is parallel to s3 under the above precedence constraints. Each of these different tasks orderings
will yield a different network structure and a different value for EU . In the winner determination
process, to track these different orderings and compute the related EU we use a continuous variable
lij , which represents the start time of a task in each bid. We have to construct the bid structure

and compute the associated EU as lij varies between the early and late start times, and the variable
xi decides if the bid under consideration is rejected or accepted.

In solving the winner determination problem one must take into account the following con-
straints on the fundamental variables lij and xi:

• Bid Selection:

xi ∈ {0, 1} ∀i = 1 · · ·n (19)

which means that a bid is either accepted or rejected.

• Start Time Limits:

ei
j ≤ lij ≤ f i

j ∀j = 1 · · ·m, ∀i = 1 · · ·n, (20)

which ensures that the start time of a task is bounded by its early and late start times.
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• Coverage:

∑

i|sj∈Si

xi = 1 ∀j = 1 · · ·m (21)

which means that each task must be included exactly once.

• Feasibility

xil
i
j ≥ xi′(l

i′

j′ + di′

j′) − M(1 − xi)

∀j = 1 · · ·m,∀i|sj ∈ Si,∀i′|sj′ ∈ (Si′ ∩ Pj) (22)

which guarantees both locally and globally that each task starts after the completion of its
immediate predecessors. The feasibility constraint in Eq. (22) is a nonlinear function that
can be rewritten in linear form as

lij ≥ li
′

j′ + di′

j′ − M(2 − xi − xi′)

∀j = 1 · · ·m,∀i|sj ∈ Si,∀i′|sj′ ∈ (Si′ ∩ Pj) , (23)

We prefer to use this linear form in the winner determination process. Here, M is a “large”
number, and the last term M(2−xi −xi′) is used to make the constraint satisfied in the case
where xi = 0 or xi′ = 0.

The number of constraints generated by these formulas is highly variable, and depends on the
length of the longest path in the task network and on the detailed composition of the bids. Details
on how to derive similar constraints for winner determination of combinatorial bids using Integer
Programming are given in [10].

5 Case Study

In this Section, we show the results of a numerical study of winner determination employing the
EU theory we have presented.

We simulate a bidding cycle by introducing different sets of bids, each for different experiments.
Figure 4 shows various bids. Each line corresponds to a specific bid, and includes the corresponding
task, early start times, duration, latest finish time, cost, and probability of success in the given
time window. Different data sets are indicated by different patterns for the corresponding bids.

The task network we use in these experiments is the one shown earlier in Figure 1. The network
has the following precedence relations: s1 ≺ (s2, s3, s4), (s2, s5) ≺ s6, and (s3, s4) ≺ s5.

5.1 Experiment 1

In this experiment we use only bids b1 · · · b11. Each bid includes just one task and in the winning–bid
structure all tasks are scheduled sequentially.

We arrive at the following results from this experiment:

• Bid b1 is rejected in all cases, since it requires 30 units of time but the bids for task s2 (b3, b7,
and b8) must start no later than at time 15; therefore, the choice of b1 violates the precedence
relations. As a result, bid b2 wins task s1.

10
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Figure 4: A bidding cycle. The figure shows early start time, duration, latest finish time, cost, and
probability values for bids bi for tasks sj.

• Task s4 is covered by bids b5 and b6 with identical costs but different probabilities. As
expected, bid b5 wins, thanks to its higher chance of completing the task.

• Task s2 is covered in b3, b7 and b8. Obviously, bid b8 loses due to its high cost and rather small
probability of success. Deciding on which bid, b3 or b7, to accept is more complicated and
its solution requires knowledge of the costumer’s risk preferences. Essentially, the customer
must have a preference for costly and less risky or cheap and more risky situations. Here the
risk is parametrized by the risk factor r present in the utility function in Eq. (2). Therefore,
such a situation illustrates one of the main uses of EU. Depending on how risk–averse the
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customer is, either b3 or b7 wins.
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Figure 5: The winner/loser regions for b3 with two different risk-aversion coefficient; (left) r=0.001
and (right) r=0.0001.

To illustrate the situation, it is useful to perform another experiment and examine the effects of
different risk factors on the winning bids. Depicted in Figure 5 are the winner/loser regions in
the cost–probability plane for bid b3 with respect to b7 for two different risk factors: r = 0.001
and r = 0.0001. Here, r = 0.001 is for a more risk–seeking customer compared to the case with
r = 0.0001. As the figure shows, for r = 0.001 less likely to succeed and cheaper alternatives
are preferred, whereas for r = 0.0001 the customer is more risk–averse and prefers more costly
but more likely to succeed bids.

• Bids b4 and b9 both cover task s3, where b4 completes the task before s4 starts, whereas b9

starts task s3 after s4 is completed. Both of these orderings satisfy the feasibility constraints,
and therefore, the winning bid can be decided only after maximizing the EU. In Figure 6, we
show the winner/loser regions in the cost–probability plane for b9 relative to b4 for r = 0.001

The importance of the order for bid evaluation can be explained as follows. Suppose that the
bids for s3 and s4 have equal probabilities but different costs. The natural choice is to do
the task with lower cost first to minimize the total cost in case the job is abandoned. On the
other hand, if the costs for s3 and s4 are equal but the probabilities are different then the
one with lower probability must be chosen first, again for minimizing the total cost in case
the job is abandoned. EU supports and realizes both of these observations.

In light of the observations above, the winning bid vector is as follows : X = {0, 1, 0, 0, 1, 0, 1, 0, 1, 1, 1}.

5.2 Experiment 2

So far we have illustrated mainly sequential structures, where winning bids always start one after
the other. Now we extend the scenario by adding b12 to b1 · · · b11 from Experiment 1.

We illustrate the winner/loser regions for b12 in Figure 7. A comparison with Figure 6 in which
the winner/loser regions for b9 are depicted for the same task, shows that the customer, when b12

is included, prefers to use b12 because of its lower cost.
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Figure 6: The winner/loser regions for b9 with risk coefficient r=0.001 for Dataset 1.
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Figure 7: The winner/loser regions for b12 for Dataset 1 and Dataset 2.

5.3 Experiment 3

In this experiment, all the bids from Figure 4, including the individual and combinatorial bids, are
used to determine the winning bids. We compare bids b10 for task s5 and b11 for task s6 versus
a combinatorial bid, b13, for both s5 and s6. In both cases, the tasks s5 and s6 are in sequential
order. In Figure 8 the EU values for each cases are shown for different costs of b13. As seen from
the figure, for costs higher than 140 the EU of the bids including b13 is lower than the EU of the
bids including b10 and b11. Therefore above the cost 140 the bids b10 and b11 are the winning ones.
It is useful to look at Figure 8 from a different perspective. Assume si and si′ are sequential tasks
connected to a network. The EU of the network is computed as

EU = −K

(

1 − pi
j + pi

je
rci

j

(

1 − pi′

j′ + pi′

j′e
−r(V −ci′

j′
)
))

(24)

where we took into account the fact that si and si′ are the last two tasks. Here K represents the
contribution of the rest of the network. We denote the probability of completion of task j given by
bid i as pi

j and the corresponding cost as ci
j . It is useful to compare the EUs of the two cases:

LHS = −K
(

1 − p10
5 + p10

5 erc10
5

(

1 − p11
6 + p11

6 e−r(V −c11
6

)
))
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Figure 8: The EU of the combinatorial bid b13 vs. the individual bids b10 and b11.

RHS = −K
(

1 − p13
5 + p13

5

(

1 − p13
6 + p13

6 e−r(V −c13
5,6)
))

(25)

where LHS refers to individual bids, and RHS to the combinatorial bid for s5 and s6. Whichever
one, LHS or RHS, is larger that bid(s) is the winner(s). Irrespectively of the value of K, one can
determine the winner by checking Eq. (25) for different cost and probability values.

As an example, let’s take the parameters from Figure 4 and vary the cost of b13. For individual
bids one finds −0.3918K. On the other hand, for combinatorial bids one gets −0.3877K, −0.3910K,
−0.3932K for c13

5,6 = 100, 130 and 150, respectively. Choosing the bid(s) whose corresponding
cost(s) gives maximum EU one can easily determine that b13 is the winner if its cost is 100 or 130.
If the cost of b13 is 150 then the winner bids are b10 and b11. This simple analysis is sufficient to
determine the winning bids without considering the remaining part of task network. Indeed, the EU
for the combinatorial case falls below that of the individual case at c13

5,6 = 140, which is in complete
agreement with Figure 8. In this way, which is nothing but a restatement of the equivalent network
construction, one can eliminate various bids in a simple way.

6 Experimental Results on Scalability

To illustrate how our approach scales we have made several experiments. Although there are
common combinatorial auction benchmarks distributions, such as CATS (Common Auction Test
Suite) [15], we have not used instances generated by these distributions in our experiments because
those distributions do not cover some essential parameters, such as time-window specifications of
tasks, precedence relations between tasks, and risk-aversion of customer.

Our experimental setup to generate problem sets, as in [7], consists of 3 main units:

• Task network generator in which the desired number of tasks is generated, and random
precedence relations among them are created;

• Bid generator in which each bid is generated by selecting a task at random from the task
network, by assigning randomly time window values using predefined time-window parameters
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Number of tasks Number of bids Time Std in time

5 10 6.3040 3.5423
5 13 36.0318 11.6602
5 16 176.5704 110.5704
5 19 324.3663 178.7854
5 21 2667.2 1686.3

Table 1: Experiments with varying the number of bids. Time is in milliseconds.

Number of tasks Number of bids Size of bids Time Std in time

3 14 2.1 874.652 588.726
5 14 1.6 979.2 541.41
6 14 1.8 1248.1 623.3

Table 2: Experiments with varying number of tasks. Time is in milliseconds.

(such as expected duration, variability of the late start time, etc.), and by determining a
uniformly distributed cost between [0,1] for the overall bid;

• Bid evaluator in which the winner-determination search is performed by considering the
risk-aversion coefficient of the customer and giving random probabilities of completion to the
selected tasks by the given bidders.

Each block requires a stream of random numbers. We generate these streams using pre-specified
seeds, so we can use the same task networks with different bid sets. For the following experiments
we generated several problem sets with randomly-generated task networks and randomly-generated
bids. We kept constant all of the parameters of the problem generator except the task count and
bid count. All experiments were conducted on a 1.6GHz Pentium M processor PC with 496MB
RAM.

In the first experiment we computed the performance of the algorithm with varying number
of bids while keeping the number of tasks constant. Table 1 shows the result of this experiment.
The “time” column gives the average values in milliseconds and “Std in time” column gives the
standard deviation in time for several randomly generated problem sets for the given number of
tasks and of bids. As the number of bids increases, the resulting choices to be considered for
determining EU increase exponentially; this requires too much CPU time to determine the EU in
each search-step of the nonlinear mixed integer solver. It is evident from the table that the mean
time scales exponentially with the number of bids.

The second experiment shows the scalability of the search process as the size of the task network
varies. Table 2 shows problem characteristics for this experiment. In this experiment we tried to
keep the size of the bids, i.e. the mean number of tasks specified in each bid, constant. In the
table, the bid size is not constant exactly due to the nature of the bid generation process.

7 Related Work

Despite the abundance of work in auctions [17, 12], limited attention has been devoted to auctions
over tasks with complex time constraints and uncertainty. Execution uncertainty is studied in [19]
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where the design of mechanisms is extended from traditional game-theoretic approaches to take
into account not only cost but also probability of failure. A software framework with APIs for
winner determination algorithms is introduced in [4]. The framework extends auction mechanisms
to single/multi-unit, single/multiple attributes, single/multiple items, but does not include time
and other constraints.

In [18], a method is proposed to auction a shared track line for train scheduling. The problem is
formulated with mixed integer programming, with many domain-specific optimizations. Time slots
are used in [26], where a protocol for decentralized scheduling is proposed. The study is limited to
scheduling a single resource, while MAGNET agents deal with multiple resources. Walsh et al [24]
propose a protocol for combinatorial auctions for supply chain formation, using a game-theoretical
perspective. They allow complex task networks, but do not include time constraints like we do in
MAGNET.

Agents in MASCOT [21] coordinate scheduling with the user. Their major objective is to show
policies that optimize schedules locally. Our objective is to optimize the customer’s utility. In
MAGNET we are not scheduling resources the agent has, we are producing a schedule that other
agents will execute. The results reported in [25] on the problem difficulty in job-shop schedul-
ing share many similarities to the problems we encounter when solving the winner determination
problem in MAGNET.

A commonly used way for handling multiple attributes is to convert qualitative attributes into
price-equivalents, or to define scoring functions for each attribute and combine the scores by using
a utility function [3]. Unfortunately, this approach does not extend easily to time and precedence
constraints.

In previous work [1] we proposed an approach based on Expected Utility to compute agent’s
preferences over different schedules for the tasks in an RFQ, and proposed the algorithm for com-
puting the payoff-probability outcomes of different schedules that we are using here. The major
difference is that there we were interested in generating schedules of tasks to maximize expected
utility before any bid is submitted. Here we are maximizing the agent’s expected utility once the
bids have been submitted, in the winner determination process.

8 Conclusions

MAGNET is designed to support negotiation among multiple, heterogeneous, self-interested agents
over the distributed execution of complex tasks. If an agent is to act on behalf of a human decision-
maker in such an environment it must be able to evaluate risk factors in ways that the person will
find reasonable. We believe Expected Utility Theory offers a good framework for doing this.

In this work we have studied the winner determination problem using EU so that not only
cost but also time and risk postures are taken into account. EU proves useful for making decisions
when one must choose between cheap-but-risky and costly-but-safe. Moreover, EU is a powerful tool
for choosing between bids with similar costs and probabilities but different time spans in feasible
regions. The theoretical bases discussed in Section 4 as well as our examples confirm the usefulness
of EU in determining the winning bids.

The maximization of EU is solved as a nonlinear mixed integer programming problem. While
the continuous variation of the individual start times for each task determines the structure, the
acceptance/rejection of a bid is decided via an integer variable.

Additionally, we have shown how to find an equivalent task network to compute EU. The
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calculation of equivalent units proves useful in reducing a complex network structure into simple
units with known expressions for equivalent costs and probabilities.
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