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The ability to express preferences for specific tasks in multi-
agent auctions is an important element for potential users
who are considering to use such auctioning systems. This pa-
per presents an approach to make such preferences explicit
and to use these preferences in bids for reverse combinatorial
auctions. Three different types of preference are considered:
(1) preferences for particular durations of tasks, (2) prefer-
ences for certain time points, and (3) preferences for specific
types of tasks. We study empirically the tradeoffs between
the quality of the solutions obtained and the use of prefer-
ences in the bidding process, focusing on effects such as in-
creased execution time. We use both synthetic data as well as
real data from a logistics company.

Keywords: auctions, agent preferences, scheduling tasks

1. Introduction

Auctions are used in multi-agent systems, among
other things, to perform allocation of tasks (see e
.g. [14] and [15]). Such reverse auctions, where the
buyer is the auctioneer, can be of a combinatorial
type, allowing for bidding on bundles of tasks. Sand-
holm [13] notes that reverse auctions are not econom-
ically efficient because optimal bundling depends on
suppliers preferences, which traditionally cannot be
expressed. Enabling the agents to express the prefer-
ences of their users is an important requirement for ac-
tual companies and people to use agents for bidding.

In this paper we propose a concrete preference func-
tion to be used by an agent to express preferences over
tasks. This function expresses preferences for specific
properties of tasks and it is used in a decentralized task
allocation setting. We introduce a bidding algorithm,
where an agent bids on its most preferred tasks that are
feasible given its current commitments. This algorithm

uses a pricing mechanism which depends on the actual
cost to perform the tasks and on the preference for the
task. The influence of preferences on the price can be
varied by setting a parameter (look at the role of the
parameter p in the algorithm in Section 3.5).

Using this algorithm, we investigate the impact of
preferences upon other aspects of task execution, such
as execution time. We use both synthetic as well as
real data from a logistics company and present results
for four types of market situations (resource shortage
vs. resource overflow, wide vs. narrow time windows)
with different settings of the parameter p that affects
the influence preferences have on price.

This paper is organized as follows. First, the auc-
tioning system used throughout the paper is introduced
in Section 2. Section 3 introduces a function to express
preferences and a bidding algorithm based upon such
preferences. Experiments to evaluate the bidding algo-
rithm and to study the trade-off between preferences
and efficiency of task execution are presented in Sec-
tion 4. Section 6 discusses related work, and finally,
Section 7 concludes the paper.

2. The MAGNET System

The approach we present exploits some unique fea-
tures of the MAGNET [4] system that allows au-
tonomous agents to negotiate over coordinated tasks
with precedence and time constraints. The MAGNET
system consists of: (1) a customer agent, which puts
tasks up for auction. The tasks have time constraints
and other restrictions; (2) suppliers agents, which bid
on the tasks and execute them if awarded; and (3) the
MAGNET market server, which keeps track of the ac-
tivities of the agents and of the auctions. The main in-

AI Communications
ISSN 0921-7126, IOS Press. All rights reserved



2

teractions between agents in the MAGNET system are
as follows:

– A customer agent issues a Request for Quotes
(RFQ) which specifies the tasks, their precedence
relations, and a time line for the bidding process.
For each task, a time window specifies the earliest
time the task can start and the latest time the task
can end.

– Supplier agents submit bids. A bid includes one
or more tasks, a price, the portion of the price to
be paid as a non-refundable deposit, and the es-
timated duration and time window for task exe-
cution. Bids reflect supplier resource availability
and constrain the customer’s scheduling process.

– The customer agent decides which bids to accept.
Each task needs to be mapped to one bid and the
constraints of all awarded bids must be satisfied in
the final schedule. In MAGNET the customer can
chose from a collection of winner-determination
algorithms (A*, IDA* [2], simulated annealing,
and integer programming [3]).

– The customer agent awards bids and specifies the
work schedule.

3. Preference Algorithm

In the bidding algorithm we propose, price is used
as a mechanism to express preferences for tasks. Pref-
erences in our case can be a combination of the follow-
ing: (1) a preference for tasks of a particular duration
(e.g. I hate performing very short tasks), (2) a prefer-
ence for tasks at particular times during the day (e.g. I
love getting up early in the morning, so give me tasks
that ought to start early in the morning), and (3) a pref-
erence for particular types of tasks (e.g. I really hate to
perform a task like that).

We show how to express these preferences and how
to combine them. The preference for a task is referred
to as φtask , which we express using a real number in
the interval [0,1]. Hereby, 1

2 indicates a neutral prefer-
ence, 0 is not preferred, and 1 is fully preferred. Since
humans typically do not think in terms of a number
when specifying preferences, we provide for each of
the preference types covered a more intuitive formu-
lation using piecewise linear functions, as explained
next. The specifics of how preferences are computed
could be adapted for different domains, while keeping
the approach.

3.1. Preferences for Duration

Let the preference to perform tasks of a certain du-
ration be an integer. Such an integer can indicate ei-
ther a minimum or a maximum duration. Let dmin be
the minimum duration you want a task to last, i.e. you
want the task to last longer than dmin. Durations be-
low dmin are not preferred. If the duration is precisely
dmin the preference is 1

2 , i.e. neutral. Let dclose be an
integer that indicates how longer than dmin the task
should last to be fully preferred. Tasks with duration in
the range [dmin, dmin+ dclose] are more preferred than
neutral, but not fully preferred. Any duration longer
than dmin+ dclose is fully preferred. Then the prefer-
ence φduration of a task with duration dtask can be cal-
culated using a piecewise linear function as follows:

– preference for minimum duration dmin:

if dtask ≥ dmin then
φduration,task = 1

2 + min( 1
2 × dtask−dmin

dclose
, 1

2 )
if dtask < dmin then
φduration,task=max(dtaskdmin

- 1
2 , 0)

– preference for maximum duration dmax:

if dtask ≤ dmax then
φduration,task = 1

2 + min( 1
2 × (dmax−dtaskdclose

), 1
2 )

if dtask > dmax then
φduration,task = max(dmaxdtask

- 1
2 , 0)

3.2. Preferences for Time Points

Let the preference for particular time points be in-
dicated by a time of the day (e.g. 6.30 a.m.). Such a
preference can indicate that the time needs to be be-
fore a particular time point tbefore, or after a time point
tafter. Let tclose indicate a time which is considered
close to a particular time point. Again, the preference
for a task which is precisely at the specified time point
tbefore or tafter is 1

2 , i.e. preference neutral. The pref-
erence for a given start time ttask can now be calcu-
lated as follows (note that for calculations using time
points these are represented in seconds of the day):

– preference for a task time before tbefore:

if ttask ≤ tbefore then
φtime,task = 1

2 + min( 1
2 × ( tbefore−ttasktclose

), 1
2 )

if ttask > tbefore then
φtime,task = max( tbeforettask

- 1
2 , 0)

– preference for a task time after tafter:
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if ttask ≥ tafter then
φtime,task = 1

2 + min( 1
2 ×

ttask−tafter
tclose

, 1
2 )

if ttask < tafter then
φtime,task = max( ttasktafter

- 1
2 , 0)

3.3. Preferences for Tasks

The last way to express preferences is for specific
types of tasks. Let typetask be the type of a task. The
type of a task is specified by means of a range of inte-
gers, whereby integers are ordered based upon similar-
ity of the tasks. For example, if tasks are represented on
the interval [0, 100], then the task identified with 1 is
completely different from the task identified with 100,
but has great similarity with the task identified with 2.
Let the preferred tasks include a certain range of tasks
[typelower, typeupper]. Furthermore, let typeclose be an
integer that expresses when a task is close to another
task. The preference is calculated as follows:

– if (typelower ≤ typetask ≤ typeupper) then
φtype,task = 1;

– if typelower > typetask then
φtype,task=min( typeclose

typelower−typetask , 1)
– if typeupper < typetask then

φtype,task=min( typeclose
typetask−typeupper , 1)

3.4. Combining Preferences

The preferences specified above are usually com-
bined. We assume that preferences are independent of
each other and we combine them using a weighted sum
of the preferences, setting the weight to 0 if a prefer-
ence is not expressed. The weights are set by the user
according to their relative importance.

φtask = wduration × φduration,task+
wtime × φtime,task+
wtype × φtype,task ,

where wduration + wtime + wtype = 1

3.5. Bidding Algorithm with Preference for Tasks

We assume that the supplier agent owns a single
resource with a specific capability (with which, of
course, a number of different task types can be per-
formed, as explained earlier). Furthermore, the re-
source has an availability slot (i.e. a begin and end
time) as well as a specific typebegin when the resource

is initially setup and an end typeend at which the use of
the resource needs to end. The supplier agent maintains
a schedule of the tasks planned for its resource.

We now present a bidding algorithm that takes pref-
erence values φtask into account. The algorithm is a
greedy algorithm, supplier agents bid upon as many
tasks as feasible to maximize the usage of their re-
source. The algorithm uses a parameter, p, to vary the
influence of the preference upon the eventual price bid.

The tasks within an RFQ are first ordered based
upon their preference. If some tasks have identical
preferences, they are ordered according to the earliest
start time specified in the RFQ. We assume that there
exists a function SwitchTime: TASKTYPE × TASK-
TYPE → DURATION that calculates the switching
time from one task type to another (when it can be
performed on the resource). Furthermore, ExecTime:
TASKTYPE → DURATION expresses the time needed
to perform the task.

Bidding Algorithm
The bidding algorithm allocates tasks to empty slots

in the schedule for the resource in a greedy way, taking
one task at a time in order of preference and trying to
fit it in the earliest empty slot available in the schedule.
The algorithm does not guarantee an optimal allocation
but is simple and fast.

Let LFprior be the latest finish time in the current
schedule of the task which is scheduled just before the
current empty slot (or the schedule start time if no such
task exists). Let typeprior be the type of the previous
task (or typebegin in case of no prior task), LSnext be
the latest start time of the next task (or the schedule end
time if no such task exists), and typenext be the type of
the next task (or typeend in case of no next task).

For each task taskcurrent in the ordered list of tasks
if taskcurrent can be done using the resource

for each empty slot scurrent in the schedule
if taskcurrent fits in scurrent (see below)

then insert taskcurrent in the bid,
add its time parameters to the schedule,
and compute the bid price (see below)

else if LFcurrent ≤ LFnext
then break {taskcurrent is abandoned}

To see if taskcurrent fits in slot scurrent in the
schedule, check if the following holds, where ES indi-
cates the earliest start time, LS the latest start time, and
LF the latest finish time of a task:
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[(LFprior + SwitchTime(typeprior, typecurrent))
≤ LScurrent]
∧ [(EScurrent + ExecTime(typecurrent) +

SwitchTime(typecurrent, typenext)) ≤ LSnext]
∧ [LFprior + SwitchTime(typeprior, typecurrent) +

ExecTime(typecurrent) +
SwitchTime(typecurrent, typenext) ≤ (LSnext]

Figure 1 shows graphically the constraints.

ExecTime

EF LF ES LS

ES LS EF LF

SwitchTime SwitchTime

next

≤

current

prior

≤

length ≥ExecTime

Fig. 1. Constraints for a task to fit into an empty slot.

The price of a task in the bid is computed as follows
(note the use of the parameter p):

pricetask =
(1 + (p× (1− φtask)))×

[SwitchTime(typeprior, typecurrent) +
ExecT ime(typecurrent) +
SwitchT ime(typecurrent, typenext, )]

We have shown earlier how to calculate the value
of φtask for the different types of preferences. This
price equation assumes a certain standard price for
each minute of time spent. In case these costs vary, the
cost per minute can be included as an additional pa-
rameter.

4. Experimental Setup

We now describe the effect of adjusting the param-
eter p in the bidding algorithm defined above. Fur-
thermore, we study the effect of the preferences on
the duration of task execution, which is an indicator
of how efficiently the tasks are being performed. To-
gether these form the utility function of the suppliers.
Of course it is expected that having more preferences
awarded will result in a less efficient execution. We are
interested in assessing the severeness of these effects.
We performed experiments using synthetic data, and
experiments using a real dataset obtained from a truck-
ing company.

4.1. Experimental Setup with Synthetic Data

We start by describing the parameters in the setup
with synthetic data, and specify the actual settings
used. There are many parameters that can influence the
results. Many of them influence the difficulty of the
task allocation problem in general. These include:

1. The number of tasks to be allocated.
2. The number of resources available.
3. The ratio between the resources required to per-

form the tasks and the availability of those re-
sources (e.g. one resource might be more scarce
than another). This also includes the specification
of duration of tasks, switching time, and initial
resource settings.

4. The tightness of the time windows specified in
the tasks. Wider time windows allow more flexi-
ble scheduling of tasks, therefore finding a solu-
tion is easier.

The preference value itself is influenced by other pa-
rameters, including the following:

1. The parameter setting for the preference func-
tions (e.g. what is considered to be a close-by
task, the stricter this norm is, the more easily
preferences can be met).

2. The variation of tasks that exist (i.e. more varia-
tion means that it will be easier to get your pref-
erences met).

Finally, other parameter settings can be varied, such
as the number of iterations, and the value of the pa-
rameter p, which is used in the bidding algorithm to
determine the influence of preferences on price.

4.1.1. Parameter Settings Used
We set the parameters of the preference functions

and the variety of tasks to fixed values. This means that
the preference function itself remains constant over
time, so that the influence of the parameter p is the only
variation regarding the preference function.

We used several variations of the difficulty of the
task allocation throughout the experiments. In partic-
ular we considered a market where more than suffi-
cient resources are available (overflow) versus a market
where resources are

insufficient (shortage). Furthermore, the tightness of
the time windows was varied by either setting them
very tight or setting them wide. More precisely, the fol-
lowing parameters have been used to affect tightness
of tasks:



5

1. the number of tasks was fixed to 10.
2. the number of resources available varied between

12 (tight market) and 50 (plenty of resources
available).

3. the ratio between the required resources to per-
form tasks and the availability of those resources
was fixed. We had three types of resources, each
generated with equal probability. The number of
different tasks per resource was set to 9999. The
maximum time to change from one task to an-
other was set to 100 minutes. Task types were
generated in a random fashion with an equal
probability as well.

4. The tightness of the time windows specified in
the tasks was varied between just sufficient time
to perform the task to twice the time needed plus
two full hours.

The parameter setting for the preferences are set so
that initially the preference for tasks is around 60%,
equally divided over the different preferences. Each of
the agents is assigned one type of preference at ran-
dom. The parameter p varied between 0 and 5.

4.2. Trucking data

Besides synthetic data, we tested our approach us-
ing a real company dataset from the trucking domain.
The dataset consists of a number of container trans-
ports that need to take place. Tasks require a certain
transportation from one zip code (the pickup location)
to an intermediate location (the delivery location), end-
ing at a third location (the return location). Therefore,
a task description does not consist of one integer spec-
ifying the task, as before, but of three integers.

Furthermore, each task is associated with a certain
earliest start time and a particular deadline at which
the container needs to be returned at the return loca-
tion. In addition to the containers that require trans-
portation, the dataset also specifies which trucks are
available. These can carry one container at a time (so
only one type of resource is available), and have a cer-
tain availability slot when the truck becomes available,
and when the truck needs to be returned. A location is
also specified where the truck starts, and where it has
to end. This nicely maps to the algorithm specified.

The performance time is now defined as the time to
go from the pickup to the delivery location, plus the
time to go from the delivery location to the return loca-
tion. The switching time is no longer an artificial time,
but it is the actual driving time from one zip code to
another.

The characteristics of the dataset are shown in Ta-
ble 1 and Table 2. The only artificial data which
we have generated are the preferences of the various
trucks. This is done according to the method men-
tioned for the synthetic data. Finally, the preference for
type of tasks is the average of the three different inte-
gers included in the task description (i.e. pickup, deliv-
ery, and return location).

Traveling distance per task
(in km)

% tasks within distance

0-10 6.4

10-30 26.3

30-60 36.1

60-120 4.1

120+ 27.1
Table 1

Traveling distance required to perform tasks in the dataset.

Traveling distance between
tasks (in km)

% of tasks

0-5 48.3

5-10 41.8

10+ 9.9
Table 2

Distance between tasks in the dataset.

5. Results

This Section presents the results on the two datasets.
First, we discuss the synthetic data, followed by the
trucking data.

5.1. Results Synthetic Data

The results for the preference algorithm with vari-
ous settings for p, type of market, and tightness of time
windows are shown in Table 3. Note that for this task
allocation process on the shortage market in 8 out of
50 runs no fully covered solution exists for the wide
time window case. For the narrow time window case
this increases to 19 out of 50 runs. Hence, the alloca-
tion is difficult in the shortage market. The first col-
umn in the table shows the tightness of the time win-
dows, whereas the second column specifies the type
of market. The setting for p is shown in the third col-
umn. The fourth column specifies the average prefer-
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ence value for awarded tasks (i.e. the average value of
φtask for awarded tasks), given the setting of p. We
can see that the average preference value per task in-
creases as the value of p increases. The standard devia-
tion of this average preference is also shown. The col-
umn marked solution shows the average time needed to
perform all the tasks (again, we assume a fixed cost of
1 per minute of using a resource). This column in fact
represents the effectiveness of the solution found, and
shows that as the value of p goes up, so does the time
needed to perform all the tasks, which is what was ex-
pected. Furthermore, the standard deviation of the so-
lution is shown, and the total evaluation time needed
to allocate the tasks to suppliers. Graphical results are
presented below.
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Fig. 2. Preferences met for varying values of p

Figure 2 shows the average preferences for tasks
with varying p for the different market types and time
window settings. As can be seen, the easiest way to get
the preferences met is the overflow market with wide
time windows. The most difficult is the shortage mar-
ket with tight time windows. The curves of the shortage
market are less steep compared to the overflow market.
The influence of the time windows on the average pref-
erence value is that the curve is basically lower by a
certain constant value. The shape of the curve does not
change for varying time window settings (i.e. in both
the shortage market and the overflow market, the shape
of the curve is the same for narrow and wide time win-
dows).

In Figure 3 the influence of the setting of p upon
the efficiency of the overall solution found is shown.
Hereby the y-axis shows the percentage of increase in
the total time required to perform the tasks. As can be
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Fig. 3. Duration increase to perform tasks for varying values of p.

seen, the overall efficiency decreases as the value of p
increases. The setting whereby this increase is highest
is the case for the overflow market with narrow time
windows. This is due to the fact that there are typically
only a few suppliers on the market for which a partic-
ular task fits well into the current schedule (especially
since narrow time windows are specified), thereby re-
ducing the switching time, and thus the total duration.
If these start to increase their price due to preference,
less suited suppliers (with more switching time) will
get their bid awarded, resulting in a lower quality so-
lution. In case the time windows are wider, typically
more suppliers are present that can fit the task well
into their schedule (there are simply more time options
at which the task can be performed), therefore, there
will almost always be one that prefers the task, result-
ing in fewer increase of the duration. When looking at
the shortage market, the reverse is true. In the case of
wider time windows the duration increases more than
it increases with narrower time windows. This has to
do with the fact that in the case of a wider time win-
dow there is a higher probability of finding an alter-
native solution (thus increasing the duration), whereas
for a more narrow time window this probability is very
small due to the limited number of suppliers.

Figure 4 shows the average preference for tasks on
the x-axis and the increase in the average duration to
perform the tasks on the y-axis. This clearly shows
the trade-off between preferences awarded and the ef-
ficiency of task execution. All curves look similar (an
xn type shape) except for the point where the huge
increase starts, which varies for the different types of
markets. The only exception is the curve of the over-
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Time windows Market type p Avg. Preferences σ Solution σ Eval Time (msec)

Wide Shortage 5.0 0.826 0.336 1482.3 120.4 11.7

Wide Shortage 2.0 0.815 0.337 1481.1 123.3 10.6

Wide Shortage 1.0 0.811 0.337 1478.4 125.1 11.1

Wide Shortage 0.7 0.808 0.339 1476.3 125.0 11.2

Wide Shortage 0.5 0.798 0.346 1474.5 124.9 12.4

Wide Shortage 0.2 0.753 0.378 1458.7 121.3 9.36

Wide Shortage 0.1 0.730 0.393 1453.5 122.5 10.4

Wide Shortage 0.05 0.700 0.407 1449.5 124.3 9.80

Wide Shortage 0.0 0.662 0.422 1444.7 121.4 11.2

Wide Overflow 5.0 0.922 0.230 1381.6 121.9 38.7

Wide Overflow 2.0 0.912 0.240 1366.3 122.1 31.9

Wide Overflow 1.0 0.900 0.247 1352.7 126.4 33.5

Wide Overflow 0.7 0.891 0.251 1343.8 125.5 31.1

Wide Overflow 0.5 0.886 0.257 1343.0 126.2 25.8

Wide Overflow 0.2 0.839 0.303 1329.8 122.9 20.9

Wide Overflow 0.1 0.790 0.351 1324.1 126.8 24.9

Wide Overflow 0.05 0.739 0.389 1318.6 123.1 15.2

Wide Overflow 0.0 0.632 0.432 1314.9 122.9 20.3

Narrow Shortage 5.0 0.520 0.405 1565.0 103.4 12.9

Narrow Shortage 2.0 0.518 0.406 1563.6 101.4 17.0

Narrow Shortage 1.0 0.500 0.407 1544.8 103.5 13.8

Narrow Shortage 0.7 0.484 0.403 1537.2 98.4 11.5

Narrow Shortage 0.5 0.466 0.407 1534.5 98.7 14.4

Narrow Shortage 0.2 0.434 0.409 1520.9 94.8 12.3

Narrow Shortage 0.1 0.408 0.409 1504.6 97.9 13.1

Narrow Shortage 0.05 0.386 0.409 1498.8 97.1 17.1

Narrow Shortage 0.0 0.354 0.401 1495.2 98.8 12.0

Narrow Overflow 5.0 0.786 0.312 1471.7 329.5 14.4

Narrow Overflow 2.0 0.774 0.314 1446.9 323.5 14.4

Narrow Overflow 1.0 0.742 0.329 1398.3 378.9 21.5

Narrow Overflow 0.7 0.718 0.345 1418.6 320.3 16.9

Narrow Overflow 0.5 0.670 0.366 1337.3 410.2 16.2

Narrow Overflow 0.2 0.578 0.396 1363.7 306.6 19.3

Narrow Overflow 0.1 0.516 0.410 1330.0 363.5 16.8

Narrow Overflow 0.05 0.487 0.414 1355.0 306.3 19.4

Narrow Overflow 0.0 0.444 0.418 1297.3 407.1 23.0
Table 3

Results using synthetic data. The table shows for different values
of tightness of time windows, types of market, and p what is the
average preference value and its standard deviation in the solution. In
addition it shows the average time needed in the solution to perform
all the tasks (measured assuming a fixed cost of 1 per minute) and its
standard deviation, and the time taken to compute the solution.

flow market with narrow time windows. In this case
the results are less stable compared to the other results.
The curve with the lowest preference value, after which
a steep increase is observed, is the one in the shortage

market with narrow time windows. This makes sense
because there is hardly any room for allocating tasks
to other agents. The curve with the highest point is
the overflow market with wide time windows, in which
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Fig. 4. Preferences met versus increase in duration

there is plenty of space to express preferences and get
them awarded.

5.2. Results Trucking Data

The results using the trucking dataset are shown
in Table 4. The columns shown are the same as the
columns specified in the table regarding the synthetic
dataset.
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Fig. 5. Preferences met for the trucking dataset, for varying values
of p.

Figure 5 shows how the value of p affects the aver-
age preference for tasks. It can be seen that the value
of p required to increase the average preference signif-
icantly is much lower than for the random dataset. Fur-
thermore, the limit seems to be comparable with the
overflow market with wide time windows.
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Fig. 6. Duration to perform tasks for the trucking dataset, for varying
values of p.

The relation between the value of p and the relative
increase in duration is shown in Figure 6. As can be
seen, it is hard to find a correlation between the value of
p and the increase in duration of the solution, unlike in
the random dataset. This is considered to be a specific
characteristic of this dataset, due to the fact that the
return and pickup locations of the tasks in the dataset
are typically close to each other.
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Fig. 7. Average task preference versus duration of performing the
tasks.

Figure 7 shows the preference value versus the av-
erage duration increase, i.e. the trade-off between pref-
erences met, and the efficiency of execution. It can be
seen that there is hardly any correlation between the
average preference value of the trucks and the average
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Preference setting Avg. Preferences σ Solution σ Eval Time

5 0.956 0.141 1380.9 531.8 27.0

2 0.956 0.141 1388.6 559.6 24.7

1 0.956 0.141 1395.9 526.7 26.8

0.7 0.955 0.142 1388.3 542.5 20.6

0.5 0.949 0.149 1372.6 518.0 18.4

0.2 0.945 0.154 1395.4 559.1 22.1

0.1 0.939 0.161 1380.8 518.6 25.5

0.05 0.929 0.173 1371.9 517.9 23.5

0.01 0.904 0.214 1403.5 541.3 20.0

0.007 0.824 0.314 1380.2 533.4 19.1

0.005 0.735 0.391 1381.5 518.6 21.1

0 0.735 0.390 1372.8 519.3 21.4
Table 4

Results using the trucking dataset for varying values of p.

increase in duration. This is of course very good news
for the trucking company because this means they can
award drivers their preferences without increasing the
total driving time. This is assuming that preferences are
equally divided amongst the truckers, as in the experi-
mental setup.

6. Related Work

In the field of combinatorial auctions, a lot of at-
tention has been devoted to finding out the exact pref-
erence for particular bundles of tasks (see e.g. [5]
and [11]). In general a certain preference for each of
the bundles is assumed, but no detail is given on how
the bidder comes up with such a preference value. In
this paper we introduce a preference function that al-
lows for a more intuitive specification of preferences,
thereby taking multiple aspects of the tasks into ac-
count. Preferences for different aspects of the tasks are
combined using a weighted average to produce a single
preference value.

In research on preference elicitation, typically the
impact on selling is addressed, but the precise influence
of preferences upon the quality of the solution is not.
In this paper, we show how the allocation of tasks in a
decentralized fashion directly influences the quality of
the solution, and we explore the relationship between
the average preference of tasks and the solution quality.
In [7] an approach for scheduling a meeting between
agents is proposed, which takes into account the pref-
erences of the agents. The relationship between such
preferences and the quality of the solution is addressed,

but the problem is not studied from the perspective of
combinatorial auctions.

Task allocation can also be performed from a cen-
tralized perspective, using preferences as soft con-
straints. See, for example, [9] for an approach to con-
sider preferences in decision making. There are decen-
tralized variants of constraint optimization (e.g. [12])
but the agents in our case are not necessarily cooper-
ative. In the field of planning and scheduling prefer-
ences have been considered as well. Languages have
been developed that allow for the specification of pref-
erences and soft constraints (see e.g. [8]).

The logistic domain we use for our experiments has
been researched for quite some time (see e.g. [10]),
mainly focusing on calculating optimal solutions from
a centralized perspective. For instance, in [6] the prob-
lem addressed is to find optimal routes for transporta-
tion orders of a large set of users. Orders have to be
picked up and delivered at specific locations, within
a given time window, and using a limited number of
trucks. The solution proposed is centralized, and it is
used to support a human dispatcher.

The current trend in logistics requires an even more
distributed setting because of the use of fourth party
logistics (4PL) [1]. 4PL companies sign contracts with
large companies to arrange their entire transportation
demand. These companies, however, do not have suf-
ficient resources on their own to arrange all these
transports and therefore distribute many of those tasks
to other (partner) companies. Centralized calculation
might no longer be feasible due to lack of complete in-
formation (availability of resources is too sensitive for
a company to communicate) as well as the complexity
of calculating an optimal solution within a short period
(time is crucial in the business).
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7. Conclusions

We have presented an approach to specify prefer-
ences for tasks in a combinatorial auction setting. Al-
lowing users to specify such preferences is essential for
them to use auctions and to increase the economic ef-
ficiency of reverse auctions, as reported, for instance,
in [13]. We propose a preference function and use it in
a bidding algorithm where bids on non-preferred tasks
have a higher price.

We evaluated our approach in two ways, first by rig-
orously testing it with synthetic data. Several parame-
ters have been varied, namely the tightness of the time
windows (i.e. how easy it is to fit a task within a certain
schedule), and the relative availability of resources.
(i.e. how many suppliers can perform a task). It was
shown that it was easiest to get preferences awarded
in markets with wide time windows. The trade-off be-
tween meeting preferences and overall execution time
has been studied in depth. We have shown that the
overall efficiency of the solution in terms of execution
time is influenced most in the case of the overflow mar-
ket, due to the fact that in the shortage market there
are hardly any alternatives at hand and therefore, al-
though the agent might not prefer a task, it will still get
its bid awarded. The curves observed tend to have the
same shape when the time window setting changes but
the market type remains the same. For different market
types, the curves vary in steepness.

Besides testing with synthetic data, we have also
used a real company dataset from the trucking domain.
We have shown that the bidding algorithm is effective
in awarding suppliers more preferred tasks. The influ-
ence of this preference on the overall solution quality
was not observed using the real dataset. Hence, in this
setting the preferences being met have much less in-
fluence on the efficiency of the solution found. For fu-
ture work, it would be interesting to find out whether
other real datasets would show the same results as the
dataset used in this paper. Furthermore, exploring how
well the companies can express their preferences using
these functions would be interesting as well.
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