Automated Analysis of Auction Traces

Mark Hoogendoorn'* and Maria Gini%*

1 Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
mhoogen@s. vu. nl ,
2 University of Minnesota, Minneapolis, MN, USA
gi ni @s. um. edu

Abstract. When agents participate in an auction, either as buyers or sellers, it is
important to be able to verify compliance to auction protocols and correctness of
auction clearing. We propose a method for such a verification which is based on
analyzing execution traces of the auction. Our method has the advantage that it
does not require access to the internal of the agents, hence it is applicable to any
auction, even auctions with human and agent participants, as long as the auction
trace is available. The approach is based on an expressive temporal logic in which
properties for auction types and for agent strategies are specified. Examples of
trace analysis are used to illustrate the approach. Finally, experimental results are
presented using synthetic data.

Key words: formal verification, auction protocals, trace-based

1 Introduction

Auctions are a popular means to distribute tasks or sell items within multi-agent envi-
ronments (see e.g. [17] and [14]). A variety of auction types are available, such as single
item first price, single item Vickrey auction [16], and combinatorial auctions [8]. Each
auction type has specific constraints which specify the rules governing the auction.

Analyzing whether agents comply to the specified rules, and how effective the
agents strategies are is essential for reliable and effective auctioning systems. One
way of performing this analysis is to use model checking? techniques (see e.g. [3]
and [10]). Unfortunately, model checking requires access to the internal specifications
of the agents, which are generally unavailable, especially in systems open to participa-
tion from multiple agents and/or humans.

We present a trace-based approach to analyze compliance of agents to auction pro-
tocols. A trace consists of all the communications that occur between agents within
the auctioning system. Hence, only external information is expressed in a trace. The ap-
proach uses an expressive temporal language, called temporal trace language (TTL) [5],
which enables expressing properties with time parameters (for instance, that a bid is
submitted before a certain deadline). We use a checking tool, called TTL Checker, for

* Partial support provided by the National Science Foundation under grant 11S-0414466

2 To avoid confusion with our approach, in this paper we interpret the term model checking
as checking all possible execution paths. In principle our approach could be seen as model
checking for a single execution trace.

automated analysis of the properties against such traces. Using this temporal logic, we
specify properties of compliance to auction protocols for several auction types.

Our approach does not require the bidding to be done by agents, as long as auction
traces are available. We envision incorporating trace analysis in a supervisor agent that
acts as the security and exchange commission, or in agents that verify compliance to
auction protocols in a auction testbed, such as e-bay. Note that our approach can show
whether certain properties are satisfied for a given set of traces, but cannot guarantee
these properties will be satisfied in all future auctions.

The paper is organized as follows. First, the temporal logic used throughout this
paper is introduced, followed by the ontology, properties, and examples of analysis of
traces for various types of auctions. This is followed by results of checking properties
upon synthetic data, related work, conclusions and suggestions for future work.

2 TheTTL Language

This Section introduces the temporal logic used to represent the desired properties in the
auction. A temporal logic has been chosen because time parameters play an essential
role within auctions; for instance, auctions often specify when offers can be sent out, or
when the auction ends.

In TTL [5], ontologies for states are formalized as sets of symbols in sorted pred-
icate logic. For any ontology Ont the ground atoms form the set of basic state prop-
erties BSTATPROP(ONT). Basic state properties can be defined by nullary predicates
(or proposition symbols), such as auction, or by n-ary predicates (with n > 0), like
bid_deadline(item_1, 5). The state properties based on an ontology ONT are formal-
ized by the propositions made from BSTATPROP(ONT) using conjunction (&), negation
(), disjunction (]), and implication (—) as connectors. They constitute the set STAT-
PROP(ONT).

In order to express dynamics in TTL, important concepts are states, time points, and
traces. A state S is an indication of which basic state properties are true and which are
false, i.e., a mapping S: BSTATPROP(ONT) — {TRUE, FALSE}. The set of all possi-
ble states for ontology ONT is denoted by STATES(ONT). A fixed time frame T is as-
sumed which is linearly ordered. Hence, a trace ~ over a state ontology ONT and time
frame T is a mapping v : T — STATES(ONT), i.e., a sequence of states +; (T € T) in
STATES(ONT). The set of all traces over ontology ONT is denoted by TRACES(ONT).

The set of dynamic properties DYNPROP(ONT) is the set of temporal statements
that can be formulated with respect to traces based on the state ontology ONT in the
following manner. Given a trace -y over state ontology ONT, a certain state at time point
t is denoted by state(~, t). States can be related to state properties via the formally de-
fined satisfaction relation, indicated by the infix predicate |=, which is comparable to the
HoLDs-predicate in Situation Calculus. Thus, state(y, t) = p denotes that state prop-
erty p holds in trace ~ at time t. Likewise, state(, t) |# p denotes that state property p
does not hold in trace ~y at time t. Based on these statements, dynamic properties can be
formulated using the usual logical connectives such as —, &, |, = and the quantifiers v,
3 (e.g., over traces, time and state properties).

Analysis of whether certain TTL properties are satisfied for a set of traces can be
done in an automated fashion using the TTL Checker. For more details on the formal
syntax and semantics of TTL and the TTL Checker software see [5].

3 Single Item First-Price Sealed-Bid Auction (SIFP)

The first auction type we describe is the single item first-price auction with sealed bids.
In order to represent the interactions that take place, we use the sorts and predicates
specified in Table 1.

Sort Explanation

AGENT An agent within the system

TIME Sort representing time

ITEM_ID Identifier of an item to be sold

PRICE Sort representing the price

Predicate Explanation

offer_item: An agent offers a specific item

AGENT x ITEM_ID

bid_deadline: The deadline for submitting bids for the item

ITEM_ID X TIME

earliest_consider_time: Time after which bids for the item are considered
ITEM_ID X TIME

earliest_bid_time: The earliest time at which bids can be sent for the item
ITEM_ID X TIME

send_bid: An agent sends a bid for the item with a certain price
AGENT x ITEM_ID x PRICE

send_bid_award: The first agent awards a bid for the item to the second agent
AGENT x AGENT X ITEM_ID

payment: The first agent pays the second agent the specified price for
AGENT X AGENT x ITEM_ID|the item

x PRICE

Table 1. Sorts and predicates for single item first-price auction

A number of properties can be specified using the ontology. In this paper we limit
our presentation to properties on compliance to protocols and a property on the correct-
ness of the winner determination process.

3.1 Complianceto Protocol

We show three properties related to protocol compliance. Property P1 states that bids
cannot be submitted before the earliest offer time specified for the item. Property P2
states that awards for bids cannot be sent before the specified earliest consideration
time. Property P3 states that the price offered for the bid which is awarded has to be
paid to the seller.

P1SIFP: Non-early Submitting of Bid

V~: TRACE, t1, t2: TIME, al:AGENT, i:ITEM_ID
[[state(y, t1) = offer_item(al, i) & state(y, t1) = earliest_bid_time(i, t2)]
= —3Jt"TIME<t2, a2: AGENT, p:PRICE [state(y, t') &= send_bid(a2, i, p)]]

P2SIFP: Non-early Awarding of Bid

V~:TRACE, t1, t2:TIME, al:AGENT, i:ITEM_ID
[[state(y, t1) | offer_item(al, i) & state(v, t1) = earliest_consider_time(i, t2)]
= —3Jt"TIME<t2, a2:AGENT [state(y, t') = send_bid_award(al, a2, i)]]

P3SIFP: Payment of Offered Price
V~:TRACE, t1, t2, t3: TIME, al, a2:AGENT, i:ITEM_ID, p:PRICE
[[state(y, t1) | offer_item(al, i) & state(, t2) = send_bid(a2, i, p) &
state(v, t3) | send-bid_award(al, a2, i)]
= Jt"TIME>13 [state(y, t') = payment(a2, al, i, p)]]

3.2 Correct Winner Deter mination

The correctness of winner determination is straightforward in a first-price sealed bid
auction: the highest price bid should be selected. This is stated in property P4: If a
certain item is offered, and a bid is awarded with price p1, then there should not exist
an earlier time point at which a bid with a higher price was submitted. Note that this
property does not specify full compliance to the protocol (e.g. whether awards are sent
at the appropriate time points).

PASIFP: Correct Winner Determination
V~:TRACE, t1, t2, t3:TIME, al, a2:AGENT, i:ITEM_ID, p1:PRICE
[[state(r, t1) E offer_item(al, i) & state(y, t2) = send_bid(a2, i, p1) &
state(y, t3) | send-bid_award(al, a2, i)]
= -3t TIME<t3, a3:AGENT, p2:PRICE [state(v, t') = send_bid(a3, i, p2) & p2 > p1]]

3.3 Example of Trace Analysis

We show now how the properties expressed earlier can be checked against empirical
traces. Figure 1 shows an example of such a trace. The left side shows the atoms ex-
pressed in the ontology introduced before, the right side shows a time line where a dark
box indicates that the atom is true at that time point.
The trace shows a seller, called seller_a who offers a particular item (item_1):

offer_item(seller_a, item_1)
Time parameters are set for the auction, namely the earliest time at which bids can be
made, the deadline for bidding, and the earliest time at which bids will be considered:

earliest_bid_time(item_1, 4)

bid_deadline(item_1, 5)

earliest_consider_time(item_1, 8)
Two buyers respond. One bids a price of 5 for the item, whereas the other bids 6:

offer_item(seller_a, item_1)1
bid_deadline(item_1, 5)
earliest_consider_time(item_1, 8)1

earliest_offer_time(item_1, 4)1

send_bid(buyer_x, item_1, 5)1

send_bid(buyer_y, item_1, 6)1

send_bid_award(seller_a, buyer_y, item_1)1

payment(buyer_y, seller_a, item_1, 6)

time °© 1 2 3 4 5 6 7 8 9 10 1

Fig. 1. A trace for first price sealed bid auction

send_bid(buyer_x, item_1, 5)
send_bid(buyer._y, item_1, 6)
The seller awards the bid to the buyer who bid a price of 6 for the item:
send_bid_award(seller_a, buyer_y, item_1)
Eventually, the buyer pays the money to the seller:
payment(buyer_y, seller_a, item_1, 6)
For this trace, properties P2SIFP-P4SIFP are satisfied, but property P1SIFP is not be-
cause buyer_x sends a bid before time point 4.

Figure 2 shows a similar trace, except here there is one more error. Property P1SIFP
is again not satisfied since buyer. x did not submit its bid after time point 4 (but between
3 and 4). Furthermore, property P3SIFP does not hold since the payment is set to the
second highest bid, which is not according to the definition of first-price auction.

offer_item(seller_a, item_1)1
bid_deadline(item_1, 5)
earliest_consider_time(item_1, 8)1

earliest_offer_time(item_1, 4)1

send_bid(buyer_x, item_1, 5)1

send_bid(buyer_y, item_1, 7)1

send_bid_award(seller_a, buyer_y, item_1)1

payment(buyer_y, seller_a, item_1, 5)

time °© 1 2 3 a 5 6 7 8 9 10 1

Fig. 2. A trace for first price sealed bid auction which does not satisfy properties P1 and P3

4 Reverse Sealed Bid Combinatorial Auction

This section shows properties for a more complex auction type, namely a reverse combi-
natorial auction. The auction is reverse since in this case the auctioneer is the buyer, and
is combinatorial since each bid can include multiple items. The sorts and the ontology
used to express the occurrences in such an auction are specified in Table 2.

The ontology is more general than strictly needed. For instance we included an iden-
tifier for the Request for Quotes (RFQ), so we can handle multiple RFQs by multiple
agents. Next we will show example properties and example traces where the properties
are checked.

Sort Explanation

AGENT An agent within the system

RFQ.ID An identifier for a Request for Quotes (RFQ)
TIME Sort representing time

ITEM_ID Identifier of an item

Bib_ID Identifier of a bid

PRICE Sort representing the price

Predicate Explanation

send_rfq: An agent sends an RFQ

AGENT x RFQ_ID

rfq_bid_deadline: The deadline for the bidding process for items in the RFQ
RFQ_ID x TIME

rfq_earliest_consider_time: |The time after which the bids for the RFQ will be considered
RFQ_ID x TIME

rfq_earliest_bid_time: The earliest time at which bids for tasks for items in the RFQ
RFQ_ID x TIME can be submitted

in_rfq: An item with a certain id is part of an RFQ
RFQ_ID x ITEM_ID

send_bid: An agent sends a bid for items within an RFQ
AGENT X BID_ID x RFQ_ID

bid_price: The price of a bid

BID_ID x PRICE

in_bid: An item is included in a bid

BID_ID x TASK_ID

send_bid_award: A bid is awarded by an agent

AGENT x BID_ID
Table 2. Sorts and predicates for reverse sealed bid combinatorial auction

4.1 Complianceto Protocol

Below, we specify two properties related to protocol compliance, which are the reverse
combinatorial auction variants of the properties P1 and P2 for non-combinatorial auc-
tions.

P1C: Non-early Submitting of Bid

V~:TRACE, t1, t2:TIME, al:AGENT, r:RFQ_ID
[[state(y, t1) = send_rfq(a, r) & state(y, t1) = rfq-earliest_bid_time(r, t2)]
= —3Jt"TIME < t2, a2:AGENT, b:BID_ID [state(y, t') = send_bid(a2, b)]]

P2C: Non-early Awarding of Bid

V~:TRACE, t1, t2:TIME, al:AGENT, r'RFQ_ID
[[state(y, t1) = send_rfq(a, r) & state(y, t1) = rfq-earliest_consider_time(r, t2)]
= —3Jt"TIME < t2, b:BID_ID [state(y, t') = send_bid_award(a, b)]]

4.2 Correct Winner Deter mination

Assuming that all the items have to be acquired, in order for an evaluation to be correct
the set of awarded bids must fully cover the items specified in the RFQ (and no more

than that), and must be the cheapest set with such full coverage. First we specify the
combination of bids that has been awarded, which simply is the set of all bids awarded:

awarded_combination(y: TRACE, t: TIME, r:RFQ_ID, a:AGENT, bc:BiD_CoMB) =
vb:BID_ID
[[ZtL:TIME > t, a2:AGENT
state(v, t1) = send_bid(a2, b, r) &
Jt2:TImME > t1 [state(y, t2) = send_bid_award(a, b)]]
= b e bc]
& [[t3:TIME > t, a2:AGENT
state(v, t3) = send_bid(a2, b, r) &
—3t4:TIME > t3 [state(y, t4) = send_bid_award(a, b)]]
= b ¢ bc]
Next we specify the price of the combination. Note that the case(a, b, ¢) operator
works as follows: if condition a holds, it evaluates to b, and otherwise to c.

combination_price(y: TRACE, t:TIME, bc:BID_COMB, p:PRICE) =
(> b.BID_IDcbe p2.PRICE 2. TiME>t Case(State(y, t2) = bid_price(b, p2), p2, 0))

A bid combination is considered valid if all bids in the set have been sent after time
t, and each item in the RFQ is included in at least one bid, and there is no other bid in
the combination for which this holds.

valid_combination(+: TRACE, t: TIME, r:RFQ_ID, bc:BID_CoMB) =

Vh:BID_ID € bc
[Ja:AGENT, t2:TIME >t
state(, t2) = send_bid(a, b)] &
Vt:TASK_ID
[state(y, t) = in_rfq(r, t)
= [3t3:TIME, b2:BID € bc
state(y, t3) = in_bid(b2, t) &
—-Jt4:TIME, a2:AGENT, b3:BID # b2
[b3 € bc &
state(, t2) = send_bid(a2, b3) &
state(v, t4) = in_bid(b3, t)]]

Given the definitions above, we can now specify property P3, which specifies that an
evaluation is correct for the set of traces if there exists no combination that is awarded
and that either is not valid or there exists another valid combination with a lower price.

P3C: Correct Winner Determination
V~:TRACE t:TIME, a;:AGENT, bc:BiD_CoMmB, r:RFQ_ID, p:PRICE
[[state(y, t) = send_rfg(a, r) &

awarded_combination(v, t, r, a, bc) &

combination_price(y, t, bc, p)] =

[valid_combination(y, t, r, bc) &

—3dbc2:BiD_CoMmB # bc, p2:PRICE

[valid_combination(vy, t, r, bc2) & combination_price(v, t, bc2, p2) & p2 < p1]]]

send_rfg(customer_a, rfq_1)1
rfq_bid_deadline(rfq_1, 5)1
rfq_earliest_consider_time(rfq_1, 8)7

rfq_earliest_bid_time(rfq_1, 4)1
in_rfq(rfq_1, task_1)1
in_rfq(rfq_1, task_2)1

send_bid(supplier_x, bid_3, rfq_1)
bid_price(bid_3, 3)1

in_bid(bid_3, task_2)
send_bid(supplier_y, bid_1, rfq_1)1
bid_price(bid_1, 4)1

in_bid(bid_1, task_1)
in_bid(bid_1, task_2)
send_bid(supplier_z, bid_2, rfq_1)1
bid_price(bid_2, 3)1

in_bid(bid_2, task_1)
send_bid_award(customer_a, bid_1)-

time °

Fig. 3. A trace of a combinatorial auction

4.3 Example of Trace Analysis

This section shows how the properties expressed in the previous sections can be ana-
lyzed upon an empirical trace. Figure 3 shows an example of such an empirical trace.

All properties specified (i.e. properties P1C-P3C) have been checked against this
trace. Properties P1C and P2C regarding the protocol hold since the seller acts according
to the time line specified. Property P3C is also satisfied, because the offer of supplier y
is cheaper than the combination of the other two offers (i.e. a cost of 4 vs. 6).

5 Reverse First Price Sealed-Bid Combinatorial Auction with Time
Windows (RCATW)

The second type of auction we consider in this paper is an auction of a combinatorial
type with explicit representation of time windows and precedence constraints between
tasks. The auction is reverse since in this case the auctioneer is the buyer, and is com-
binatorial since each bid can include multiple items. The MAGNET system [7] is an
example of such an auction, which is used for task allocation. The sorts and the ontol-
ogy used to express the occurrences in such an auction are specified in Table 3.

5.1 Complianceto Protocol

The properties for the compliance of protocol are in this case identical to the reverse
combinatorial auction presented in Section 4.

5.2 Correct Winner Deter mination

Also here large part of the properties can be reused, except for the defintion of a valid
bid and a valid combination. To define a valid bid combination, first we define that a

Sort Explanation

AGENT An agent within the system

RFQ.ID An identifier for a Request for Quotes (RFQ)
TIME Sort representing time

TASK_ID Identifier of a task

Bib_ID Identifier of a bid

PRICE Sort representing the price

DURATION Sort representing the duration of a task
Predicate Explanation

send_rfq: An agent sends an RFQ

AGENT x RFQ.ID

rfq_bid_deadline: The deadline for submitting bids for the tasks in the RFQ
RFQ_ID x TIME

rfq_earliest_consider_time: |The time after which bids for the RFQ will be considered
RFQ_ID x TIME

rfq_earliest_bid_time: The earliest time at which bids for tasks in the RFQ can be
RFQ_ID x TIME submitted

in_rfq: A task is part of an RFQ

RFQ_ID x TAsSK_ID

send_bid: An agent sends a bid for tasks in an RFQ
AGENT X BID_ID x RFQ_ID

bid_price: The price of a bid

BID_ID x PRICE

in_bid: A task is included in a bid

BID_ID x TASK_ID

send_bid_award: A bid is awarded by an agent

AGENT x BID_ID
rfq_precedence_constraint: | The first task must end before the second starts
RFQ.ID x TAsK.ID x
TASK_ID
rfq_task_earliest_start_time: |The earliest time in the RFQ when execution of a task can
RFQ_ID x TASK_ID x TIME |start

rfq_task_latest_start_time: The latest time in the RFQ when execution of a task can start
RFQ_ID x TAsSk_ID x TIME
rfq_task_latest_end_time: The latest time in the RFQ at which execution of a task can
RFQ_ID x TAsk_ID x TIME |end

bid_task_earliest_start_time: |The earliest time in a bid the execution of the task will start
BID_ID x TASK_ID x TIME
bid_task_latest_start_time: The latest time in a bid the execution of the task will start
BID_ID x TASK_ID x TIME
bid_task_duration: The duration in a bid of the execution of the task
BID_ID x TASK_ID x DURA-
TION

Table 3. Predicates used in reverse first price sealed-bid combinatorial auction with time windows

bid is valid if the execution time points for all the tasks in the bid fit within the time
windows specified in the RFQ.

valid_bid(y:TRACE, t: TIME, r:RFQ_ID, b:BID_ID) =

vtid: TASK_ID, t1: TIME

[state(y, t1) = in_bid(b, t)

= Jt2-t6:TIME, d:DURATION
[state(v, t1) = bid_task_earliest_start_time(b, tid, t2) &
state(v, t1) = bid_task_latest_start_time(b, tid, t3) &
state(, t1) = bid_task_duration(b, tid, d) &
state(y, t) = rfg-task_earliest_start_time(r, tid, t4) &
state(y, t) | rfg-task_latest_start_time(r, tid, t5) &
state(v, t) = rfg_task_latest_end_time(r, t6) &
(t2>14) & (13 <t5) & (16 > (t3 + d))]]

A bid combination is considered valid if each bid has been sent and each bid is
valid. In addition, all tasks specified in the RFQ should be covered by the bids (i.e.
no free disposal), tasks should not occur multiple times within the bid combination,
and the precedence constraints have to be met. Note that there can be multiple valid
combinations of bids per auction.

valid_combination(+:TRACE, t: TIME, r:'RFQ_ID, bc:BID_CoMB) =

vb:BID_ID € bc
[valid_bid(y, t, r, b) &
Ja:AGENT, t2: TIME > t [state(y, t2) = send_bid(a, b)]] &
vtid: TASK_ID
[state(y, t) = in_rfq(r, tid)
= [A3:TIME, b2:BID € bc
state(y, t3) = in_bid(b2, tif) &
—3t4:TIME, a2:AGENT, b3:BID # b2
[b3 € bc & state(y, t2) = send_bid(a2, b3) &
state(, t4) = in_bid(b3, tid)] &
vtid2: TASK_ID # tid
[state(v, t) = precedence_constraint(r, tid, tid2)
= 315, 16, t7:TIME, d:DURATION, b4:BID_ID € bc
[state(v, t5) [in_bid(b4, tid2) &
state(, t5) |= bid_task_earliest_start_time(b4, tid2, t6) &
state(, t3) = bid_task_latest_start_time(b2, tid, t7) &
state(, t3) |= bid_task_duration(b2, tid, d) &
t6 > (t7 + d)]111

Given the definitions above, property P3C can simply be reused.

5.3 Example of Trace Analysis

Figure 4 shows an example trace of a reverse first-price sealed-bid combinatorial auc-
tion with time windows and precedence constraints. As can be seen in the trace, the
following time window constraints are specified for the tasks in the RFQ:

rfq_task_earliest_start_time(rfq_1, task_1, 10)

rfq_task_latest_start_time(rfg_1, task_1, 12)

rfq_task_latest_end_time(rfg_1, task_1, 15)

send_rfq(customer_a, rfq_1)1
rfg_bid_deadline(rfg_1, 5)1
rfq_earliest_consider_time(rfq_1, 8)1

rfq_earliest_offer_time(rfq_1, 4)1

in_rfq(rfq_1, task_1)1
rfq_task_earliest_start_time(rfg_1, task_1, 10)
rfg_task_latest_start_time(rfq_1, task_1, 12)
rfq_task_latest_end_time(rfg_1, task_1, 15)
in_rfq(rfg_1, task_2)

rfq_task_earliest_start_time(rfg_1, task_2, 14)
rfg_task_latest_start_time(rfq_1, task_2, 16)
rfg_task_latest_end_time(rfq_1, task_2, 18)1

rfq_precedence_constraint(rfq_1, task_1, task_2)7
send_bid(supplier_x, bid_3, rfq_1)7
bid_price(bid_3, 3)

in_bid(bid_3, task_2)
bid_task_earliest_start_time(bid_3, task_2, 14)7
bid_task_latest_start_time(bid_3, task_2, 15)
bid_task_duration(bid_3, task_2, 2)1

send_bid(supplier_y, bid_1, rfq_1)- —
bid_price(bid_1, 7)
in_bid(bid_1, task_1)1 —
bid_task_earliest_start_time(bid_1, task_1, 10)1 —
bid_task_latest_start_time(bid_1, task_1, 12) —
bid_task_duration(bid_1, task_1, 3)- —
in_bid(bid_1, task_2)1
bid_task_earliest_start_time(bid_1, task_2, 15)7 —
bid_task_latest_start_time(bid_1, task_2, 16) —
=

bid_task_duration(bid_1, task_2, 2)1
send_bid(supplier_z, bid_2, rfq_1)1
bid_price(bid_2, 3)

in_bid(bid_2, task_1)1
bid_task_earliest_start_time(bid_2, task_1, 10)1

bid_task_latest_start_time(bid_2, task_1, 12)
bid_task_duration(bid_2, task_1, 3)1

send_bid_award(customer_a, bid_2)

send_bid_award(customer_a, bid_3)

time ° 1 2 3 4 5 6 7 8 9 1

Fig. 4. A trace of a combinatorial auction with time windows

rfq_task_earliest_start_time(rfq_1, task_2, 14)

rfq_task_latest_start_time(rfg_1, task_2, 16)

rfq_task_latest_end_time(rfq_1, task_2, 18)
Furthermore, one precedence constraint is specified, indicating that task 1 should be
completed before task_2 can start:

rfq_precedence_constraint(rfq_1, task_1, task_2)

Several bids are received in response to the RFQ. In bid_1 both tasks are included,
whereas bid_2 and bid_3 merely cover task_1 and task_2 respectively. The time win-
dows included in the bid can be seen in the trace. bid_2 and bid_3 are awarded for
a total price of 6, which is cheaper than bid_1 which costs 7. Evaluation of the trace
reveals that P1C and P2C are satisfied but P3C is not. Although all the time windows

included in the bids do comply with the times specified in the RFQ, the precedence
constraint does not; the latest start time plus the expected duration of task_1 is later
than the earliest start time for task_2. As a result, P3C is not satisfied.

6 Experiments

In order to investigate how scalable the approach is we have generated numerous syn-
thetic traces and checked the properties specified in the previous sections using these
traces. Two auction setting presented earlier are addressed, namely the single item first-
price sealed-bid auction, and the reverse sealed-bid combinatorial auction with time
windows. These have been chosen to show how the approach performs for a relatively
simple auction and for the most complex one addressed in this paper.

6.1 Singleltem First-Price Sealed-Bid Auction

The first auction type considered is the single item first price sealed bid auction. For this
case, traces have been generated with a varying number of buyer agents participating

in the auction. For each setting of the number of agents, 50 traces have been generated,

and the following number of agents have been tested: {1, 5, 10, 25, 50, 75, 90}. Hereby,

the agents bid a price which is generated from a random distribution. Furthermore,

the times at which they submit their bids, and receive awards precisely comply to the

times communicated by the seller (which are fixed throughout the runs). Finally, the
evaluation of the bids by the buyer is done by exhaustive search, resulting in a correct

evaluation. Hence, the generated traces are traces in which all properties are satisfied,
so these are worst case scenarios (when a counter example can easily be found the

computation time severely drops). The results are shown in Figure 5.

As can be seen in the figure, properties P1 and P2 scale up very well (linear),
whereas properties P3 and P4 scale up in an exponential fashion. The fact that P3 and
P4 do not scale up well has to do with the number of variables that are quantified in the
properties, which is significantly smaller in properties P1 and P2 than it is for properties
P3 and P4. But even for the maximum number of agents (90 in this case) the compu-
tation only takes several milliseconds, which still makes the approach useful for most
auctions being investigated.

6.2 Reverse Sealed-Bid Combinatorial Auction with Time Windows

The second set of experiments have been conducted upon the reverse sealed-bid com-
binatorial auction with time windows. In this setting, there are multiple variations pos-
sible, namely vary the number of tasks, the number of bidders, and the average number
of bids per bidder. In this case, we have decided to limit the number of variations to two
elements, namely the number of tasks, and the number of bidders. Each agent submits
one bid per trace. Hereby, one agent includes all the tasks in the bid (to make sure at
least one combination of bids covers all tasks), and the other agents randomly select the
tasks they bid upon (in this case they include a task in their bid with probability of 0.5).

x10°

-~

P2
P3
P4

)
*

Computation time (sec)
w S (5

N

-

B S N—
e X . !

" "
0 20 40 60 80 100
Number of agents

0

Fig. 5. Computation time needed to verify correctness of different properties for single item first
price sealed bid auctions with varying numbers of agents. Results shown are averages of 50 traces
for each setting.

Furthermore, the time windows included per task precisely comply to the constraints
specified in the RFQ. In Figure 6 and 7 we show the results for property P1 and P2.
Hereby, the number of agents that bid have been varied between 1 and 50, whereas the
number of tasks have been varied between 1 and 6. 50 runs have been performed for
each setting.

omputation time (sec.)
Computation time (sec.)

Ci

30

Number of items Number of agents Number of items Number of agents

Fig. 6. Computation time needed for P1inthe Fig. 7. Computation time needed for P2 in the
RCATW RCATW

It can be seen in the figures that the same patterns are present as seen in Section 6.1.
The computation time scales up in a linear fashion as the number of agents goes up. Fur-
thermore, the number of tasks does not influence the overall computation time needed.

For properties P3 and P4 results are shown for smaller number of agents (1 to 5
bidders). Hereby, the number of tasks again does not influence the overall computa-
tion time needed, whereas an increase of the number of agents causes an exponential
growth of the computation time. This is consistent with known complexity results for
clearing combinatorial auctions that show there is no polynomial-time solution, nor
even a polynomial-time bounded approximation [15]. These results can however be im-
proved by for example performing pre-processing of the trace by splitting the trace up
into multiple parts, and running the checks in parallel. This is part of future work.

)
a 9
o o

Computation time (sec.)
Computation time (sec.)
=
o
<]

a
=3

no

3
3

Number of items 11 Number of items 11

Number of agents Number of agents

Fig. 8. Computation time needed for P3inthe Fig. 9. Computation time needed for P4 in the
RCATW RCATW

7 Related Work

Analysis of compliance of agents to certain desired properties has been studied exten-
sively. Typically however, such properties are not studied by analysing empirical traces
but by proving that given certain agent behaviors, some particular desired behaviors are
guaranteed. There is a large body of work on model checking of multi-agent systems,
see e.g. [10] and [3], where typically model checking is used for conformance testing,
i.e. to verify that the implementation of an agent respects an abstract protocol definition
for agent interactions. In [13] model checking is used to verify agent systems imple-
mented using the logic-based AgentSpeak language. An auction system is presented as
a case study to show how BDI auction specifications are satisfied and can be verified
using a model checker. However, in open systems knowledge of the internals of the
agents is generally not available, so model checking cannot be applied widely.

The specification of protocols using temporal logic has been addressed, e.g. in [9].
The verification of such properties upon auctioning traces has however not been ad-
dressed before. In [2] a framework is introduced for the specification of properties
for open systems, as well as reasoning and verification of these properties. They use
the contract net protocol as a running example. They take a normative systems view,

specifying social constraints, social roles, and social states. The approach focuses on
verification at an abstract organizational level, not on specific empirical traces of agent
behavior.

A tool called SOCS-SI aimed at verifying compliance of agent interactions is pre-
sented in [1]. In their approach a history manager composes an event history which is
checked in the social compliance verifier. Some example properties related to auctions
are presented, but the paper focuses on the verification approach more than on verifi-
cation of auctions. This method, as ours, does not require access to the internals of the
agents, but checks compliance only by examining the interaction protocols. In [4] prop-
erties are expressed for evaluating traces of human negotiation, also using TTL. The
scope of the paper is however limited to multi-issue negotiation with a specific proto-
col, and not to specification of properties for auctions in general, which is the aim of
this paper.

Current work to increase trust in auctions addresses almost exclusively the issue
of verification of the identity of buyers and sellers (see, for instance, [11] for a study
on trust and reputation on eBay). Alternatively, secure protocols are proposed (see, for
instance, [12, 6]) to ensure that communications between the agents and the auction-
eer are protected. There is an implicit assumption that the auction clearing houses act
properly. We believe that with the proliferation of auction houses the need to verify the
correctness of their operations will increase. This could be done using the approach we
present in this paper.

8 Conclusions

We introduced an approach to analyze auction traces. We have adopted an expressive
trace-based temporal logic (cf. [5]), which enables the specification of desired proper-
ties that include specific time points. Using this temporal logic, we presented ontolo-
gies that represent the specific interactions between the agents that participate in the
auctions, properties of the auction protocols. All the properties are specified in a modu-
lar fashion, allowing re-usability. We have illustrated the analysis process by means of
example traces. To automate the analysis, the properties have been implemented in the
TTL Checker software (cf. [5]).

The approach presented analyzes traces of communications that occurred during
auction sessions. The approach does not need any knowledge of the internals of the
agents, and is therefore suitable for open environments and for mixed humans/agents
auction systems. The assumption that execution traces are available is not unrealistic
and could be added as a requirement to web based auction sites to verify rule compli-
ance.

The scaling of the verification process itself is an important aspect. The fact that
we do not use model checking techniques, but focus on traces of negotiation behavior,
makes the approach more scalable compared to model checking techniques. The results
have shown that for simple properties, the approach scales up in a linear fashion whereas
for the more complex cases the approach scales up exponentially. For these complex
traces however, it is possible to analyze subsets of such traces in parallel. Analyzing
the improvements of such parallel checking is future work. General scalability of the

checking of properties against traces using TTL and the accompanying software tool
has been described in [5]. Future work is to verify these properties on real auction data,
to investigate whether the protocol was always followed.

References

1.

10.

11.

12.

13.

14.

15.

16.

17.

M. Alberti, M. Gavanelli, E. Lamma, F. Chesani, P. Mello, and P. Torroni. Compliance
verification of agent interaction: A logic-based software tool. Applied Artificial Intelligence,
20:133-157, 2006.

A. Artikis, J. Pitt, and M. Sergot. Animated specifications of computational societies. In
Proc. First Int’l Conf. on Autonomous Agents and Multi-Agent Systems, pages 1053-1062.
ACM, 2002.

R. H. Bordini, M. Fisher, C. Pardavila, and M. Wooldridge. Model checking Agentspeak. In
Proc. Second Int’l Conf. on Autonomous Agents and Multi-Agent Systems, pages 409-416.
ACM, 2003.

T. Bosse, C. M. Jonker, and J. Treur. Experiments in human multi-issue negotiation: Analysis
and support. In Proc. Third Int’l Conf. on Autonomous Agents and Multi-Agent Systems,
pages 672-679. IEEE Computer Society, 2004.

T. Bosse, C. M. Jonker, L. van der Meij, A. Sharpanskykh, and J. Treur. Specification and
verification of dynamics in cognitive agent models. In Proc. Sixth Int’l Conf. on Intelligent
Agent Technology (IAT 2002), pages 247-254. IEEE Computer Society, 2006.

Y. F. Chunga, K. H. Huanga, H. H. Leeb, F. Laia, and T. S. Chen. Bidder-anonymous en-
glish auction scheme with privacy and public verifiability. Journal of Systems and Software,
81(1):113-119, January 2008.

J. Collins, W. Ketter, and M. Gini. A multi-agent negotiation testbed for contracting tasks
with temporal and precedence constraints. Int’l Journal of Electronic Commerce, 7(1):35—
57, 2002.

P. Cramton, Y. Shoham, and R. Steinberg. Combinatorial Auctions. MIT Press, 2006.

M. Fisher and M. Wooldridge. Specifying and executing protocols for cooperative action. In
Proc. Int’l Working Conf. on Cooperating Knowledge-Based Systems, 1994.

F. Guerin and J. Pitt. Guaranteeing properties for e-commerce systems. In Agent-Mediated
Electronic Commerce IV. Designing Mechanisms and Systems, pages 397-413. Springer Ver-
lag, 2002.

A. Hortacsu. Trust and reputation on ebay: Micro and macro perspectives. Technical report,
Department of Economics, University of Chicago, 2005.

A. Jaiswal, Y. Kim, and M. Gini. Design and implementation of a secure multi-agent mar-
ketplace. Electronic Commerce Research and Applications, 3(4):355-368, 2004.

R. Podorozhny, S. Khurshid, D. Perry, and S. Zhang. Verification of cooperative multi-agent
negotiation with Alloy. Technical Report TXSTATE-CS-TR-2006-4, Texas State University,
San Marcos, TX, September 2006.

T. Sandholm. An implementation of the contract net protocol based on marginal cost cal-
culations. In Proc. of the Eleventh Nat’l Conf. on Artificial Intelligence, pages 256-262,
Washington, DC, 1993.

T. Sandholm. Algorithm for optimal winner determination in combinatorial auctions. Artifi-
cial Intelligence, 135:1-54, 2002.

W. Vickrey. Counterspeculation, auctions, and competitive sealed tenders. Journal of Fi-
nance, 16:8-37, 1961.

M. P. Wellman, W. E. Walsh, P. R. Wurman, and J. K. MacKie-Mason. Auction protocols
for decentralized scheduling. Games and Economic Behavior, 35:271-303, 2001.

