Market Architecture for Multi-Agent
Contracting: An Internet Standards Based
Approach

Leonard R. Josephs
Department of Computer Science and Engineering
University of Minnesota
josephs@cs.umn.edu

Plan B Project

Abstract
The problem of creating a software architecture suitable for the

MAGNET (Multi AGent NEgotiation Testbed) system is examined
and an Internet standards-based solution is presented.

1 Introduction

1.1 The Rise of Business-to-Business Electronic Com-
merce and Interest in Multi-Agent Markets

We have witnessed tremendous growth in the use of the Internet for elec-
tronic commerce. In the past few years alone, there has been well-publicized
exponential growth in the World Wide Web (WWW) and in business-to-
consumer (B2C) e-commerce. Much of the recent activity is in the rapidly
expanding business-to-business (B2B) e-commerce market, with the global
market expected to exceed $7.29 trillion in 2004, according to Gartner Group
research.

Without a doubt, businesses are interested in leveraging the Internet and
B2B e-commerce relationships in order to reduce costs, gain efficiency in core

1

business processes, and hold strategic advantage over competitors. A recent
study from Boston Consulting Group predicts productivity gains from B2B
e-commerce will equal 1% — 2% of sales by 2004 and 6% by 2010.

The rising interest in B2B e-commerce has profound implications for the
size and complexity of the B2B marketplace itself. The size of the B2B e-
commerce marketplace is rapidly growing, both in terms of the number of
participants and in terms of transaction size and volume. In fact, business-
to-business hubs, which link buyers within a particular industry or across a
shared need, are expected to handle as much as $1.25 trillion by 2003. Like-
wise, the complexity of the logistics involved in B2B transactions has grown
considerably and is increasing nearly exponentially. The market for supply-
chain management (SCM), customer-relationship management (CRM), and
work flow automation products and services is evidence of the complexity of
the logistics involved in B2B e-commerce.

A logical outcome of the enormous size and complexity of the B2B mar-
ketplace is the need to not only automate the B2B processes, but also to sup-
port intelligent decision making in B2B markets. Self-interested, autonomous
software agents can be used to automate processes in a B2B marketplace,
making intelligent decisions themselves or deferring to humans as appropri-
ate (as is the case in mixed-initiative systems). Additionally, software agents
may be used to model behavior over time, thereby increasing understanding
of the market itself.

1.2 The MAGNET Problem

Research in modeling B2B processes and market behavior using intelligent,
autonomous software agents has created the need for generalized market
architectures.

Markets play an essential role in the economy, and market-based architec-
tures are a popular choice for multiple agents (see, for instance, [3, 20, 21]).

Most market architectures limit the interactions of agents to manual ne-
gotiations, direct agent-to-agent negotiation [18, 8], or various types of auc-
tions [22].

Researchers at the University of Minnesota created prototypes of a gen-
eralized market architecture and related agents while performing research
on multi-agent contract negotiation. The resulting system was called MAG-
NET (Multi AGent NEgotiation Testbed). MAGNET provides support for
a variety of types of transactions, from simple buying and selling of goods

and services to complex multi-agent contract negotiations. In the latter case,
MAGNET is designed to negotiate contracts based on temporal and prece-
dence constraints, as well as price.

This version of the Magnet Architecture [7] has proven useful in a number
of experiments, providing a simulation environment that is easily adapted to
a variety of experimental purposes.

As more experiments are performed, fundamental limitations in the cur-
rent MAGNET architecture are becoming more apparent. The lack of de-
tailed architecture specifications and requirements has resulted in high code
complexity and the emergence of hidden risks in scalability and usefulness
of the system. In addition, new technologies have emerged that promise to
enhance the utility of the system.

This paper attempts to address limitations in the current MAGNET ar-
chitecture by documenting important architecture requirements and then
proposing an improved architecture that satisfies those requirements. In ad-
dition, the paper will discuss the design of the improved architecture, includ-
ing recommended technology choices and the initial work done to implement
the new architecture.

The remainder of this paper is organized as follows: Section 2 discusses
some issues associated with multiple-agent contracting, which, in turn, places
high-level requirements on the system architecture. Section 3 provides a ref-
erence model describing the environment of MAGNET agents, and the basic
activities and roles of agents in that environment. Section 4 briefly examines
various technology options that could be used in building a suitable software
architecture for the MAGNET system. Section 5 describes the architectural
style needed to fulfill the high-level system requirements. Section 6 presents
the technologies chosen to re-architect the MAGNET system and how they
fit the architectural style and high-level requirements. Section 7 details the
improved architectural model. Section 8 discusses the specifics of the imple-
mentation work performed. Finally, Section 9 summarizes the results of the
analysis, and outlines future plans and open problems.

2 Architectural Requirements

The development of high-level requirements for an architecture is important
for measurement of the success of the architectural design and for under-
standing the basis of design decisions [1]. Successful requirements address

the needs of project stakeholders. The business case for the project and the
demands placed on the project by the project’s stakeholders must be carefully
considered in order to create a successful architecture [1].

The business case was outlined in section 1.1 of this paper. Essentially,
the architecture must support research activity in market-supported agent
negotiation and contracting.

2.1 Interested Parties

The following stakeholders need to be considered in order to assure the suc-
cess of the improved MAGNET architecture:

2.1.1 Primary Research Team

The MAGNET project is a joint effort between researchers at the Univer-
sity of Minnesota and at DePaul University. Researchers on both campuses
are actively writing code to test new research ideas, so flexibility is key. In
addition, the team does not want to lose any functionality in the system
so that experiments may be re-run and earlier work extended. Recent soft-
ware development at Minnesota has centered around agent design, bid eval-
uation, graphic user interfaces to agents, protocols, and architecture while
development at DePaul has involved markets, exchanges, and server design.
Therefore, agents need well-defined but loosely-coupled interaction with the
market and associated server or servers. Finally, it would be nice for each
team to able to run the system at either campus and easily access it from
the other.

2.1.2 Research Community

Another goal of MAGNET would be to allow the larger research community
(others interested in multi-agent negotiations using a market framework) to
extend work on the MAGNET system. In particular, it seems plausible that
other types of agents and/or negotiation protocols could be used within the
MAGNET architecture.

2.1.3 National Science Foundation (NSF)

The MAGNET project has partial funding from the NSF. The NSF has an
interest in seeing that MAGNET research benefits society, provides educa-

4

tional opportunities, and that NSF funds are used wisely towards these goals.
Therefore, cost is an issue as funds are limited and are intended to be di-
rected towards research and education, rather than expensive software tools
and platforms.

2.1.4 Business Community

The business community has significant interest in learning from MAGNET
and using MAGNET-related technology to automate business practices. In
particular, MAGNET technology could be used for Supply-Chain Manage-
ment, automated contracting, and other types of business-to-business e-
commerce. Therefore, MAGNET must support transactions between agents
that have qualities such as security, transactional consistency, and authenti-
cation, since similar properties are required in traditional (non-automated)
business transactions. Details of using MAGNET for Supply-Chain Manage-
ment may be found in [5]. The use of MAGNET in automated contracting
is discussed in [4].

2.2 Driving Forces and Derived Requirements
2.2.1 Breadth of Agent Participation (BAP)

Maximizing the number and variety of agents that may be supported in
the MAGNET architecture should be a major goal of the system as a whole.
Unintentional or unnecessary constraints on the pool of agents that may par-
ticipate in the market undermines the usefulness of the market as a whole
and lead to market inefficiencies. The restrictions on allowable agents in a
market directly impacts the performance of the market. Allowing agents that
are spread out across the Internet to interact in the MAGNET environment
is key to gaining wider acceptance as a research tool and important in sim-
ulating larger, more diverse markets. Therefore, the following requirements
may be derived:

BAP-1: Open Communications Agents should be able to participate
in the MAGNET market over the open Internet. This implies the need for
information to flow easily across network boundaries (such as firewalls) by
using widely-accepted Internet standards and protocols.

BAP-2: Heterogeneous Agents Agent implementation should not be
dictated by the structure of the MAGNET architecture. In particular, agents
shouldn’t have to be tightly coupled to the MAGNET market or session.

BAP-3: Agent Platform Independence Another goal of the MAGNET
Architecture should be to minimize the effect of heterogeneous platforms and
computing environments on the ability of agents to participate in MAGNET
markets. Agents should not have to be written in a particular language or
run on a specific platform.

BAP-4: MAGNET Market Support MAGNET marketplaces and as-
sociated servers should be able to be hosted on a variety of platforms. At a
minimum, MAGNET should be operable in the UNIX (Solaris and Linux)
and Windows environments since they are in use by the MAGNET research
team.

2.2.2 Flexibility and Adaptability (FA)

As MAGNET is intended to serve the research community, it is important
that the MAGNET Architecture be flexible enough to allow for a variety of
experiments to be performed. Agents and market components will likely need
to be adapted in order to model different problem domains; the MAGNET
Architecture should be supportive of change.

FA-1: Extensible Protocol The MAGNET system is a research vehi-
cle; agent negotiation protocols are under research as well and therefore are
subject to change. Messages and parts of messages that are not completely
understood by agents or the MAGNET system should be recorded or re-
ported and not cause system failure.

FA-2: Open Protocol The protocol can not be opaque to the MAGNET
session. Agent communications should be be open to the MAGNET system
for inspection. For instance, the protocol needs to be visible to MAGNET
server so that the servers can manage the distribution of the protocol elements
(such as the RFQ) to registered agents who should be informed and so that
MAGNET servers may manage bid timeouts. As is discussed in detail in [7],
a MAGNET server can act as a trusted intermediary, providing important

protections to participating agents, and this requires MAGNET servers and
the agents to have access to the negotiation protocol.

FA-3: Runtime Flexibility The MAGNET architecture should lend it-
self to the use of design patterns that offer runtime flexibility so that agents,
markets, and the like can be easily configured with minimal impact to the
source code. The use of configuration parameters, modules, and factories is
encouraged since this allows experiments to be quickly configured, run, and
reproduced in the MAGNET environment. The details of the factory pattern
in object-oriented design is described fully in [10].

FA-4: Scalability Although extremely high numbers of MAGNET ses-
sions and participating agents is unlikely in a research prototype, care should
be taken to create a MAGNET architecture that doesn’t place arbitrary lim-
its on scalability. Poor scalability could limit the interest in adopting MAG-
NET technologies to commercial use, since scalability is important to the
business community and other interested parties for real-world applications.

2.2.3 System Integrity (SI)

System integrity is key to the acceptance of the MAGNET system both as a
research tool (results must be consistent and reproducible) and as technology
valuable to the business community.

SI-1: Agent Identity Agent identity needs to be persistent and traceable
to a responsible person or organization.

SI-2: Security Basic security mechanisms will be required for the use of
MAGNET on the Internet or other open networks since MAGNET may be
used to model or automate real-world business processes. Agent-to-market
authentication, privacy of message data, message integrity, and possibly audit
and non-repudiation can be provided by a basic security mechanism. The
architecture should provide a means of basic security that requires minimal
impact to application code. Note that user-to-agent authentication is the
responsibility of the agent and therefore not addressed by the MAGNET
architecture.

SI-3: Persistent context The MAGNET architecture needs to support
the notion of a persistent context in which negotiation takes place. Agents
should be able to start, stop, disconnect, and connect without losing identity
or context. In particular, shutting down an agent should not allow the agent
to repudiate commitments or result in the loss of messages intended for the
agent.

2.2.4 Software Cost and Maintenance (SCM)

As mentioned in section 2.1.3, there are limited funds and resources available
to the MAGNET project, especially for the use of improving the underlying
architecture. Cost and maintenance requirements of the architecture must
be considered in order allow scarce resources to be focused on research needs.

SCM-1: Software Reuse It is important that the improvements to the
MAGNET architecture make as much use of pre-existing MAGNET source
code as practical. Code reuse and especially design reuse can cut the cost
and effort associated with improving the MAGNET architecture. Numerous
case studies and antidotal evidence supporting the ability of design and code
reuse to cut costs can be found in [23].

SCM-2: Low Cost The MAGNET architecture should be affordable to
implement; in particular, care should be taken to avoid expensive technologies
and software solutions.

SCM-3: Active Support The underlying technologies used for the MAG-
NET architecture should be actively supported. This is so that improvements
and new developments may be incorporated into MAGNET and so that de-
fects found in the underlying technologies may be corrected with a minimum
of effort from the MAGNET team and interested parties.

3 Reference Model

A reference model is defined in [1] as “A division of functionality together
with data flow between the pieces”. The reference model must therefore
address the major components of the MAGNET system and the interactions
between them.

Some basic architecture work that was done to identify components and
interactions in the MAGNET system may be found in [7]. The reference
model is based off this work.

3.1 Introduction

The MAGNET reference model is taken directly from [7] and contains agents,
exchanges, markets, and the protocol used to interact between these compo-
nents. A conceptual view of the components is shown in Figure 1.

MAGNET provides an agent the ability to use market mechanisms to
discover and commit the resources needed to achieve its goals. The assump-
tion is that agents are heterogeneous and self-interested and typically act
on behalf of entities who have different goals and different notions of util-
ity. Agents may fulfill the role of customer or supplier with respect in the
MAGNET reference model, as shown in Figure 1.

Customer Agent
Top-Level
Goal T Supplier Agent
» Planner |« Market —
I Domain . | wi i
Task Model Domain Manager
Network Market Model /' 9
Re-Plan Market | Ontology ‘
Bid «— Statistics Bid Commitments
,,,,,,,,, Protocol
i » Manager |+ Bid
‘ Protocol Availability
Re-Bid Task ol Market |y
e-Bi Assignment i
; v Session
] v Events & Resource
""""""" Execution | | - Responses Manager
Manager

Figure 1: The MAGNET reference model

3.2 Customer Agent

Customer agents plan and then pursue their goals by formulating and pre-
senting Requests for Quotations (RFQs) to supplier agents through a market
infrastructure [6]. Customer agents next evaluate the bids received from sup-
plier agents, and award bids to selected supplier agents. Finally, customer

agents may monitor execution of the tasks specified in the awarded bids.
Customer agents attempt to satisfy their goals for the least net cost, where
cost factors can include not only bid prices, but also goal completion time
and risk factors. More precisely, these agents are attempting to maximize
the utility function of some user, as discussed in detail in [4].

3.3 Supplier Agent

Supplier agents attempt to maximize the value of the resources under their
control by submitting bids in response to customer RFQs, specifying what
tasks they are able to undertake, when they are available to perform those
tasks, and at what price. See [4] for more details of supplier agent goals.

3.4 Exchange

An exchange is a collection of domain-specific markets in which goods and
services are traded, along with some generic services required by all mar-
kets [7]. Possible services in an exchange include an identity verification
service or a Better Business Bureau that can provide information about the
reliability of other agents based on past performance. The exchange is a
network-accessible resource that supports a set of markets and common ser-
vices. Agents can use the exchange to find markets to participate in. An
example exchange is depicted in Figure 2.

Exchange Common

Serivces

Participating buyer Ly -
Sellgy

Security

<l
* Credit
Better
Market |4 | Bysiness

Participating s Bureau
Agent buye

Participating seller
Agent

I >I

Administrator
Agent

o2

Exchange API Layer
Securityl Layerl

o
<
c
S
IS
2
€
£
5
<

!

Other
Services

e

Figure 2: The Structure of an Exchange

10

3.5 Market

Each Market within an exchange is a forum for commerce in a particular
commodity or business area [7, 4]. Each market includes a set of domain-
specific services and facilities, as shown in Figure 3, and each market draws
upon the common services of the exchange.

A

Market Common

Serivces
Participating

Agent Session
\‘ Generator

Participating
Agent

Protocol

Market AP|
API

Session Ciient
Participating Registry
Agent

Administrator
Market < Agent
Ontology

o

Figure 3: The Structure of a Market within the Exchange

The market contains an Ontology that describes the types of tasks or
goods that the market deals in. Each description not only describes the item,
but also contains statistics, including details like the number of suppliers that
typically will bid on the item, and how long the task typically takes [4]. The
market also keeps a Registry of suppliers that have expressed an interest in
participating in market activities, and maintains performance statistics that
customers can use in their decision processes.

3.6 Market Sessions

An important component of each market is a set of current sessions in which
the actual agent interactions occur. A market session is the vehicle through
which market services are delivered dynamically to participating agents. It
serves as an encapsulation for a transaction in the market, as well as a per-
sistent repository for the current state of the transaction, throughout the life
of the contract [4, 7].

11

3.7 Protocol and Typical Data Flow
3.7.1 Agent-Market Interaction

Before Customer-Supplier Interaction may occur, both types of agent must
communicate with the exchange in order to find the markets that they may
participate in. After the exchange has returned a simple list of the markets
available to the agent, the agent chooses the market to participate in and
registers with the market. Finally, the agent requests ontology information
(the types of goods or tasks the market deals in) which is returned as a set
of information objects.

3.7.2 Customer-Supplier Interaction

The bidding interaction between customer and supplier agents starts with a
Request for Quotes (RFQ) issued by the customer, followed by a set of bids
submitted by interested suppliers, and concludes with a set of bid awards
issued by the customer. After contracts are awarded, the execution phase
starts. The exact protocol for the execution phase is considered an open
issue.

A sequence diagram showing customer-supplier interaction is depicted in
Figure 4.

e The customer agent issues an RFQ to the market for consideration by
suppliers. The RFQ specifies a task network, which includes a specifi-
cation of each task, and a set of precedence relations among tasks. For
each task, a time window is specified giving the earliest time the task
can start and the latest time the task can end.

e Suppliers may respond to an RFQ with a bid on a task or tasks. Bids
may specify individual or combinations of tasks with a single price or
individual prices. Bids also specify time information. A supplier’s bid
includes a price for the task(s), a portion of the price required to be
paid as a non-refundable deposit at the time the bid is awarded, an
estimated duration for the task(s), and a time window within which
the task(s) can be started.

e When the customer awards a bid, it must pay to the supplier the deposit
and specify the actual time, within the supplier’s specified time window,
at which it wishes to begin the task.

12

Contractor Market Supplier
Agent Session Agent
4:{ Contractor formulates plan ‘
Session looks up
Call-for-Bi supplier; retrieves
%’K Supplier Agents

Call-for-Bids

Session validates and : .
records bids; may hold ‘ Supplier formulates bid ’i;
them until deadline
k « B
« B
4:{ Contractor evaluates bids ‘ Session validates and
records bid acceptance
Bid Acceptance

v ————BdAcoeptance
S Contractor monitors -
plan execution Plan Execution i»

Delivery

Time

Session closes
transaction

Figure 4: Customer-Supplier Interaction in a Typical Contracting Market
Session

13

e When the supplier completes a task, the customer must pay the re-
mainder of the price, beyond the deposit, as specified in the awarded
bid.

e If the supplier fails to complete a task, the price is forfeit and the deposit
must be returned to the customer. A penalty may also be levied for
non-performance, but we ignore this complication at this point.

4 Technology Options

The intent of this section is to briefly examine current technologies that
could be used as the basis of the MAGNET framework. The emphasis is
on technologies that may be used for the framework supporting agent par-
ticipation rather than technologies for the agents themselves, since it is ex-
pected that agents will be implemented using a variety of technologies (see
requirements [BAP-2: Heterogeneous Agents| and [BAP-3: Agent Platform
Independence]). Put another way, the technologies considered in the rest of
this section are capable of supporting communication between remote agents
and the market and can be used to build the protocol, exchange, market,
and session components discussed in Section 3.

4.1 Client-Server Technologies
4.1.1 Socket Communications

Simple socket communications could be used between agents and the MAG-
NET market. This would involve writing a server that fields requests from
agents. A concern with this approach is the format of the protocol used for
client (agent) to server communications. The implementation decides the
protocol and message format, meaning that unless standards-based proto-
cols are used (for example, HTTP or SMTP), the protocol will be opaque to
non-MAGNET systems, preventing the crossing of network boundaries (see
the requirement [BAP-1: Open Communications]).

Both the agent and server must be written to understand the protocol
and message format. This leads to tight coupling between components and
“brittle” systems, where a simple change in a protocol element, server version,
or client version results in the need to update all components in the system.

Secure Sockets Layer (SSL) can provide “wire” security for sockets-based
communication.

14

It should be noted, however, that socket communications underlie all the
discussed network technologies in this paper and are in a sense the “lowest
common denominator”. As such, it is always possible (with potentially a
great deal of effort) for a component on a platform that doesn’t support
the technology discussed to participate using sockets. The amount of effort
involved to fully implement the protocols and related supporting services of
these technologies makes it unrealistic to use sockets in almost all cases.

4.2 Distributed Object Technologies

Distributed Object Technologies allow components to interact at a high level
by making method invocations on remote objects as if they were method
invocations on a local object within the memory space of the invoker. See
Section 5.1.2 for a discussion of distributed object architecture. There are
three major distributed object systems in use today: CORBA, DCOM, and
Java RMI. Enterprise JavaBeans are also discussed.

4.2.1 Common Object Request Broker Architecture (CORBA)

The Common Object Request Broker Architecture (CORBA) is a distributed
object specification for achieving interoperability between distributed com-
puting nodes [12]. CORBA 1.1 was introduced by the Object Management
Group (http://www.omg.org) in 1991. This specification defined an In-
terface Definition Language (IDL), an Application Programming Interface
(API), and an Object Request Broker (ORB) that provide the framework for
distribute objects to interact. Essentially, the ORB acts as a bus connect-
ing the objects, allowing objects to make method calls on each other [16].
CORBA 2.0 specifies an Internet Inter-ORB Protocol for communications be-
tween ORBs supplied by different vendors and distributed over the Internet.
In addition, CORBA defines a number of services, such as object activation,
security, transactions, and object discovery (naming, trader services) that al-
low rich object interactions. IDL supports multiple language bindings (map-
ping of CORBA to and from language-specific constructs), including Java, C,
C++, Lisp, COBOL, Smalltalk, Ada, Python, and IDLScript. Therefore, the
requirement [BAP-3: Agent Platform Independence]| is satisfied, since IDL
can be compiled on a variety of platforms and languages. See the CORBA
Specification [13] for additional details.

Objects in CORBA interact across the Internet using IIOP, a binary

15

protocol. Unfortunately, many enterprises do not allow ITIOP across network
boundaries since IIOP is not easily inspected for malicious content. Hence,
requirement [BAP-1: Open Communications] is not satisfied.

Security is supported in CORBA both at the service level (via the security
service) and “on the wire” (via SEC-IIOP, or SSL with IIOP). Persistence
may be supported using the persistence service. Therefore, MAGNET re-
quirements [SI-1, SI-2, and SI-3] are all potentially satisfied. Unfortunately,
not all CORBA vendors support all the CORBA services, including the se-
curity and persistence services. Therefore, as a practical matter, there is a
danger of becoming tied to a particular CORBA ORB or vendor and losing
some interoperability..

CORBA implementations are available from commercial vendors such as
Iona and Borland. Numerous free CORBA ORB and implementations exist;
some free implementations include MICO, JacORB and Orbacus. There-
fore, the requirements [SCM-2: Low Cost] and [SCM-3: Active Support] are
satisfied as well.

4.2.2 Distributed Component Object Model (DCOM)

Distributed objects can also be created using Microsoft’s Distributed Com-
ponent Object Model. DCOM uses a object remote procedure call (ORPC)
on top of Microsoft’s distributed computing environment to allow interaction
with remote objects as if they are local. DCOM ORPC is a binary protocol,
like CORBA’s ITOP, and as such tends to be blocked at Internet firewalls.
Thus requirement [BAP-1: Open Communications] is not supported.

Like CORBA, DCOM allows components to be implemented in a va-
riety of languages, including C++ and Visual Basic. DCOM is a purely
Microsoft technology; all objects in the system must be implemented using
Microsoft’s technology in order to participate in the DCOM environment
directly. DCOM does not satisfy requirements [BAP-2, BAP-3, or BAP-4]
because of the need to use Microsoft solutions for all components. This sit-
uation is referred to as the “Vendor Lock-In" architecture AntiPattern in [2]
and tends to have negative effects on the cost and ability to maintain the
software. In addition, open standards are difficult to maintain in such a
situation.

16

4.2.3 Java Remote Method Invocation (RMI)

Java Remote Method Invocation (RMI) is the distributed object system built
into the core Java environment [9]. Like CORBA and DCOM, RMI transmits
method invocation requests in a binary format. Hence, requirement [BP-1:
Open Communications] is not satisfied.

In addition, RMI is a Java-only protocol; distributed objects must be
implemented in Java, although Java provides ways around this limitation.

e Java provides a means to access objects written in other languages
through the Java Native Interface (JNI). Therefore, objects written in
other languages may use JNI to access a proxy or wrapper object that
speaks Java RMI. This approach works for all platforms that support
a Java Virtual Machine (JVM).

e Newer versions of Java RMI have been enhanced with the ability to use
ITOP as the transport protocol for RMI requests; therefore, non-Java
objects may use CORBA to communicate with Java RMI objects.

Using either means described above, it is possible to support requirements
[BAP-2: Heterogeneous Agents| and [BAP-3: Agent Platform Independence].
Java technology is free, alleviating cost concerns. Software reuse is maxi-
mized, since the current MAGNET system is implemented in Java and Java

is actively supported by Sun Microsystems, among others. Therefore, re-
quirements [SCM-1, SCM-2, and SCM-3] are also satisfied.

4.3 Web-based Technologies

Web-based technologies use the HyperText Transfer Protocol (HTTP) as
a means of communication between remote components. Therefore, all of
these technologies use open, text-based communication that will satisfy re-
quirement [BAP-1: Open Communications].

4.3.1 Common Gateway Interface (CGI)

The Common Gateway Interface (CGI) provides a means of executing pro-
grams from a web server. In essence, the web server forwards requests for
specific resources to an external program for processing. The output of this
program is then sent back to the client in place of a static file.

17

The use of CGI processing allows data to flow between remote clients over
HTTP, an Internet standard, thereby supporting requirement [BAP-1: Open
Communications]. An important problem is that while the data transport
mechanism is standard, the data encoding used is not. Protocol data has to
be encoded into HTML “forms” or parameters, leading to a large amount of
code for parsing requests and encoding responses in the CGI program. This
tight “coupling” of protocol to the implementation is similar to the client-
server protocol issues discussed above and leads to difficulty in supporting
the [BAP-2: Heterogeneous Agents|, [FA-1: Extensible Protocol], and [SCM-
1: Software Reuse] requirements, since the protocol encoding scheme is not
standardized.

CGI programs may be written in almost any language, so requirement
[BAP-4: MAGNET Market Support] is satisfied by the CGI approach.

The life-cycle for CGI programs can result in great demand on web servers
since new processes are often spawned for CGI programs. This approach is
not considered to be as scalable as the plugin and servlet approaches (which
better support requirement [FA-4: Scalability]) [14].

4.3.2 'Web Server Plugins

Web server companies (such as Netscape and Microsoft) have created pro-
prietary extension APIs or plugins. Plugins have the ability to change or
extend the web server’s functionality by calling linked-in classes written in
C or C++. The approach is extremely fast but causes security issues, since
a bug in a plugin can cause the entire web server to crash[14]. Therefore,
plugins are a poor choice for market infrastructure, since malicious agents
have the ability to use bugs in plugins to subvert or disable the entire market.
In addition, the plugin approach is highly-vendor specific — market code will
vary depending on the web server to be supported (thereby failing require-
ment [BAP-4: MAGNET Market Support| and [SCM-1: Software Reuse]).

As with the CGI approach, a protocol data-encoding format would need to
be implemented between the client and plugin. As discussed in Section 4.3.1,
requirements [BAP-2: Heterogeneous Agents], [FA-1: Extensible Protocol],
and [SCM-1: Software Reuse| are poorly supported.

18

4.3.3 Java Enterprise Edition Technologies

Servlets and JSP Java supports the notion of a “servlet” which is a
generic server extension. The most common form of servlet is the HT'TP
servlet, which is used to extend web server functionality. Servlets are handled
by separate threads within a web server process but do not share the security
concerns of plugins since they are run within a Java Virtual Machine [14].
Servlets are more efficient than CGI. Additionally, servlets are supported in
most major web server platforms and are Java programs, so servlets are a
relatively platform-independent solution that satisfies requirement [BAP-4:
MAGNET Market Support].

As with the CGI and plugin approaches, a protocol data-encoding scheme
would need to be implemented, in this case between the agents and servlets.
As discussed in Section 4.3.1, requirements [BAP-2: Heterogeneous Agents],
[FA-1: Extensible Protocol], and [SCM-1: Software Reuse] are therefore
poorly supported by this approach.

Java Server Pages (JSPs) are HTML pages that contain snippets of Java
code. When a JSP is fetched by a web server on behalf of a client, the
JSP is complied into a servlet class. Therefore, JSPs offer much the same
functionality as servlets [14] and satisfy the same requirements as the servlet
approach..

Enterprise JavaBeans and Application Servers Enterprise JavaBeans
(EJB) are Java components (objects following the JavaBean specification)
that communicate using Java RMI and that interact in the EJB environ-
ment [9]. The EJB environment (the EJB container)is provided by an Ap-
plication Server, which typically provides a web container as well. The EJB
container provides a number of distributed object services, including object
lookup (via JNDI), persistence (via Entity Beans), and transaction process-
ing. Therefore, EJBs are ideal for web-enabled applications, since the web
container provides web-based access to the application, and the business logic
may be placed in distributed components across the enterprise that may be
transactional and persistent [9].

Note that EJBs communicate with each other using RMI; therefore, EJBs
don’t communicate across the Internet well. EJBs communicate well within
the enterprise, but need to resort to web-based communication in order to
communicate across the Internet (to satisfy requirement [BAP-1: Open Com-
munications)).

19

Enterprise JavaBeans are a part of Java 2 Enterprise Edition (J2EE),
which is freely available. The J2EE specification [19] provides more details
about EJBs and the services available to EJBs in the J2EE environment.
Application servers for deploying EJBs are available from commercial vendors
(BEA’s Weblogic or IBM’s WebSphere products). Free versions are also
available (for example, JBoss or Enhydra). Therefore, the [SCM-1, SCM-2,
and SCM-3] requirements are satisfied.

4.3.4 Active Server Pages

Active Server Pages (ASP) is a Microsoft technology for generating dynamic
web content using HTML pages containing snippets of embedded code (usu-
ally VBScript or JScript). The code snippets are read and executed by the
web server before the page is sent to the client [14]. ASP is optimized for
generating small portions of dynamic pages [14].

Support for ASP is built into Microsoft’s Web Server (IIS); third-party
products (Sun’s ChililSoft for example) allow it to work with other servers
at significant cost. Therefore, Vendor Lock-In [2] and cost are issues (failing
requirement [SCM-2: Low Cost]) as is platform support (requirement [BAP-
4: MAGNET Market Support]).

4.3.5 HTTP-based SOAP Service Providers

The Simple Object Access Protocol (SOAP) is a text-based wire protocol
that uses Internet standards (HTTP) for data transport and the eXentsible
Markup Language (XML) for data encoding [15]. SOAP is a standard con-
trolled by the World Wide Web Consortium (W3C) and backed by several
industry giants including IBM and Microsoft (the SOAP specification may
be found at http://www.w3.org). The use of the HTTP Internet standard
means that data is transported across network boundaries easily (satisfying
requirement [BAP-1: Open Communications]).

A SOAP web service receives a service request as an SOAP-encoded mes-
sage (an XML document) and returns an XML document as a response. The
SOAP framework takes care of data encoding, decoding, and execution of
the proper method on the service object. Therefore, agent and market im-
plementation is independent of data encoding issues and requirements [FA-1:
Extensible Protocol], [FA-2: Open Protocol], and [SCM-1: Software Reuse]
are supported.

20

Apache and Microsoft have free SOAP toolkits for sending and receiv-
ing SOAP messages, and more vendors are planning SOAP support in their
products. Therefore the SOAP approach meets requirements [SCM-2: Low
Cost] and [SCM-3: Active Support].

4.4 Messaging Technologies
4.4.1 Message-Oriented Middleware

Message-Oriented Middleware (MOM) systems provide a means of asyn-
chronous communication between components. Components may exist on
separate and heterogeneous platforms. Components use the middleware to
send and receive messages; the middleware typically provides implements
message encoding, decoding, and message queuing. Examples include MQSeries
from IBM and Tibco’s Rendezvous [17]. Other vendors include SilverStream,
Oracle, and BEA. “Vendor Lock-In” [2] is a particular danger, since these
propriety solutions do not necessarily interoperate. In addition, all the ex-
amples investigated were expensive enough to not merit consideration for
MAGNET (failure of requirement [SCM-2: Low Cost]).

4.4.2 Java Messaging Service (JMS)

Java Messaging Service provides a common interface over various Message-
Oriented Middleware implementations. Essentially, a Java developer can
write code that uses JMS for messaging and not worry about which particular
message provider will be delivering the messages. Note that JMS is subject
to the same limitations as the Message-Oriented Middleware it “wraps”,
including cost.

4.4.3 SOAP, XML, and e-mail

A pervasive, stands-based messaging scheme exists today — e-mail. E-mail
protocols, such as SMTP can be used as a message transport and XML
can be used to represent the message data. A variety of specialized XML
message formats exist for e-business message exchange. The SOAP protocol
has become a standard format and can be used to encode service request
parameters in XML. Apache SOAP, mentioned in section 4.3.5, can also be
configured to work as a messaging service as well as a web service.

21

5 Architectural Style

An architectural style is defined in [1] as “a description of component types
and a pattern of their runtime control and/or data transfer”. A style can
be thought of as a group of constraints on an architecture; one example
given in [1] is the client-server architectural style. The candidate technolo-
gies discussed in section 4 can be generally grouped into the following styles:
client-server, distributed objects, web services, and message-oriented middle-
ware.

5.1 Candidate Architectural Styles
5.1.1 Client-Server

The client-server style implies that multiple clients exist and communicate
with a server using a shared protocol. Typically, this results in a tightly-
coupled system, often with specific algorithms to encode and decode pro-
tocol elements implemented in the clients and server. Therefore, require-
ments [BAP-1: Open Communications], [BAP-2: Heterogenous Agents], and
[FA-1: Extensible Protocol| are likely not to be satisfied. In addition, there
is waning interest in this architectural style; this is primarily due to a lack
of scalability (requirement [FA-4: Scalability] is not satisfied).

5.1.2 Distributed Objects

In the 1990’s, the object-oriented community pushed for the development of
an Object RPC (Remote Procedure Call) that would link objects to com-
munication protocols [12]. This led to “distributed object” middleware that
could locate and instantiate a target object in a “server” process. To the ap-
plication programmer, a method invocation on a remote object “looks” like
an invocation on a local object. The distributed object style is highly scal-
able, as objects may be instantiated on many nodes in the system without
regard to location or the server processing the request. CORBA, DCOM,
and Java RMI are the dominant distributed object technologies in indus-
try today (see section 4 for a discussion of these technologies). All three
technologies allow object implementation to occur in multiple languages (see
section 4) and therefore support the [BAP-3: Agent Platform Independence]
requirement to some degree. Security is much easier to obtain than in tradi-

22

tional client-server systems, as security is often part of the distributed object
framework.

A problem with these technologies is that communication takes place be-
tween objects in a binary format; this causes difficultly in operating across
the Internet since most firewalls and network proxies are not configured to
pass this sort of traffic. In addition, these binary formats are not completely
interoperable with each other, sometimes requiring special bridging software
at additional cost and complexity. For example, bridges exist for interfacing
CORBA'’s Inter-ORB Protocol (IIOP) to DCOM’s Object Remote Procedure
Call (ORPC). Therefore, the [BAP-1: Open Communications] requirement
is not well supported, making this style ill-suited for agent-to-market com-
munications across the Internet.

5.1.3 Web Services

Web services were created specifically to address the needs of dynamic e-
business across the Internet. The web service architectural style is essen-
tially a Service-Oriented Architecture (SOA) style, implemented with Inter-
net standards such as the eXtensible Markup Language and the HyperText
Transport Protocol (HTTP). Therefore, the [BAP-1: Open Communications]
requirement is satisfied by this architectural style.

The Service-Oriented Architecture, as described in [11], consists of:

e Service Providers that provide a service interface for a software asset.
A service provider node can represent the services of a business entity
or it can simply be the service interface for a reusable subsystem.

e Service Requesters that discovers and invoke other software services to
provide a business solution.

e The service broker, which acts as a repository for software interfaces
that are published by service providers.

Note that this style is scalable (satisfies [FA-4: Scalability]) since Service
Providers and brokers can be spread over a number of network nodes.
5.1.4 Messaging

Message-Oriented Middleware (MOM) systems provide a means of asyn-
chronous communication by providing a framework for messages to be passed

23

between software components. Examples include MQSeries from IBM, Tibco’s
Rendezvous, and Java Messaging System (JMS) providers [17]. The primary
advantage to messaging systems is that components may be loosely coupled;

agents interacting with a server through messaging may continue work with-

out waiting for a response. Therefore, the [BAP-2: Heterogenous Agents]

may be easily achieved. Scalability [FA-4] may also be achieved through the

use of message routers.

Proprietary MOM systems can be costly (failure to meet [SCM-2: Low
Cost]) and may not easily provide messaging across the Internet due to the
use of non-standard protocols (failure to meet [BAP-1: Open Communica-
tions]). A recent trend towards XML-based messaging using standard proto-
cols, such as POP3 (Post Office Protocol) and SMTP (Simple Mail Transfer
Protocol), alleviates these concerns. See [17] for an introduction to XML in
Messaging and an example XML message broker.

5.2 Selected Architectural Style: Web Services and
Messaging

It is expected that MAGNET component interactions will require both asyn-
chronous and synchronous communications. Therefore, an ideal approach
would be to take the Web Services architecture style and add messaging to
it. In essence, the Service-Oriented Architectural (SOA) style will be used,
but in addition to the web technology added to the SOA by web services,
a messaging technology will be added as well. For example, an agent can
be modeled as a service requester, requesting some service from a provider
(which is essentially an interface to the market). In the case of the service
requested, the agent looks up the service and discovers that it may partici-
pate using a web-based synchronous approach (HTTP) or a message-based
approach using e-mail. The agent then chooses the service, making a re-
quest on it and receiving the reply either synchronously or asynchronously
depending on the service selected.

6 Technology Choices

The web service and messaging architectural style was chosen in Section 5.2.
This section addresses the technologies chosen to supply the web services

24

and messaging needed for the selected architectural style. The technology
candidates were originally presented in Section 4.

6.1 Web Services
6.1.1 SOAP Service Provider: Apache SOAP

The Apache SOAP service provider was easily chosen over Microsoft’s SOAP
services for the following reasons:

e Apache SOAP provides a Java API; Microsoft does not. The MAGNET
system is implemented entirely in Java, so integrating the Microsoft
solution would be significantly harder than integrating Apache SOAP.
Apache SOAP does a better job of supporting requirement [SCM-1:
Software Reuse] with respect to the MAGNET system.

e Apache SOAP provides integration with far more web servers than Mi-
crosoft SOAP. Apache’s SOAP service provider runs as a servlet or JSP
in more web servers; Microsoft’s SOAP toolkit uses Web Server Plugins,
Active Server Pages (ASP), and Dynamically Linked Libraries (DLLSs)
to provide SOAP Services, thereby constraining the Microsoft SOAP
service provider to Microsoft’s web server and platform (see http://
msdn.microsoft.com/library/en-us/soap/htm/soap_overview_3drm.
asp for details). Microsoft SOAP’s service provider does a poor job of
supporting requirement [BAP-4: Magnet Market Support].

e Apache SOAP service requesters (agents/clients) use Java; the Mi-
crosoft toolkit provides a VBScript API for service requesters. The
Microsoft SOAP toolkit is far more limited in the platforms supported
by the toolkit and therefore provides little support for requirement
[BAP-3: Agent Platform Independence]. Note that agents in other
languages can still request a SOAP service from either service provider
(with significantly more effort) by composing the XML request, posting
it using HT'TP over a TCP socket, and parsing the XML response.

e Apache SOAP has messaging support (addressed later in this section);
Microsoft SOAP does not.

25

6.1.2 Web Server: Tomcat

There are a number of web servers that support Java servlets (and could
therefore support Apache SOAP). The Tomcat web server, however, is de-
veloped by Apache as an open source project specifically for the execution of
servlets and is freely available from http://jakarta.apache.org/tomcat/
index.html. Sun has adopted Tomcat as the official reference implemen-
tation for Servlets and JSPs. Finally, as Apache has control over the open
source implementation of both Apache SOAP and Tomcat, the combination
has been used together extensively and documentation exists for using the
two technologies together.

6.1.3 Application Server: JBoss

The JBoss and Enhydra application servers appear to be the two predominant
freely-available application servers. JBoss has integrated Tomcat into the
application server itself, using Tomcat as the web container / web interface
for the application server. Apache SOAP interoperates well with Tomcat,
so JBoss is given the edge over Enhydra, which uses its own web server
implementation.

Both application servers provide adequate database support for persis-
tence, needed for satisfying requirement [SI-3: Persistent Context].

6.2 Messaging
6.2.1 Messaging System: Apache SOAP

Apache SOAP also provides a means of messaging via a message router,
SMTP, and POP3. The messaging system is free and Internet-standards
based.

7 The Revised Magnet Architecture

7.1 Introduction

The revised MAGNET Architecture is similar to the original architecture in
[7]. The components and interactions described in the reference model (see
section 3) have not changed; the major changes in the architecture involve
the move to a service-based model for communication and the distribution

26

of MAGNET market components (exchange, market, and session) into a
Enterprise JavaBeans-based architecture, as shown in Figure 5.

Customer Agent Supplier
Customer Customer Supplier Agent
Service Service Service Supplier
Requester Providker ~ Exchange Provider Service
Layer Layer Layer Requester
Top-Level Market Market | [Market Layer
Goal Location Locations | |Location
T ¥ senvice Service Market Market Market
Planner Client Provider Market Location | | Locations | |Location |- Bid
* | i arxe Service Service M
Task | Ontology D':":flln Ontology Provider Client /=
Service ode Service
Network : * i Domai
Client Provider Ontology| | Domain || Ontology |i¥] ‘
Re-Plan ¢ Service || Model | g‘ervitce Commitments
Bid BidColec] | gig | |RFQ IR o .
JE— » (RFQ Service .
% Manyager [P Gonice [4-Erotocol Supplier Bid Supplier Availability
| Task \ Client) Registration| | protocol *geg\stratlon ‘
. : i \Protocol 1y, seryice
Re-Bid Assignment \| Bid Award Bid Bid Award gfx:;:r Client
+ G Protocol |, | Service . Resource
; = Client Provider Bid Bid Bid Manager
b Execution Service | 4Protocol | Senvce
- i ient
Manager '\ Execution Events & ,\E/I):)enc‘:g:?n'; Provider
g
Service rd
Client Provider

Figure 5: The Revised MAGNET Architecture

7.2 Customer Agent

The Customer Agent interacts with the Market in order to do planning, man-
age bids, and monitor execution of the tasks corresponding to the awarded
bids. In the revised MAGNET architecture, the Customer Agent interacts
with the market as a SOAP service requester, preferably through the use
of the requester API. The API contains separate classes that act as SOAP
service requesters for each of the SOAP services available to customer agents
in the MAGNET system. These services include:

e A market location service for finding available markets in a MAGNET
exchange.

e An ontology service for obtaining the market domain model and statis-
tics from a market.

e A Request For Quotation (RFQ) service for submitting a RFQ into
a market and establishing a means of bid collection for the customer
agent.

27

e A Bid Award service for notifying suppliers in a market of awarded
bids.

e An execution monitoring service (or services) for providing a means to
monitor the execution of a task or tasks corresponding to awarded bids
(execution monitoring in MAGNET is currently an open issue).

7.3 Supplier Agent

The Supplier Agent interacts with the Market in order to obtain information
about markets and to bid on tasks or sets of tasks based on the RFQs in the
market. Like customer agents, supplier agents use a service requester API
for ease of composing SOAP requests. The Supplier API contains separate
classes that act as SOAP service requesters for each of the SOAP services
available to supplier agents in the MAGNET system. The services are:

e A market location service for finding available markets in a MAGNET
exchange.

e An ontology service for obtaining the market domain model and statis-
tics from a market.

e A supplier registration service for registering the supplier’s intent to
bid on selected types of tasks in a particular market.

e A bid service for submitting bids on tasks in an RFQ.

7.4 Exchange

The Exchange exists as a set of Enterprise JavaBeans (EJBs) in the MAG-
NET environment, allowing the application server to distribute exchange
functions as necessary across the enterprise. Currently, the ability to locate
markets is the only exchange-related function supported by the MAGNET
system. As stated in Sections 7.2 and 7.3, market location capabilities are ex-
posed to Customer and Supplier Agents by means of a SOAP service provider
in the MAGNET system. The market location SOAP service in the MAG-
NET system calls methods on a proxy EJB that interacts with the rest of the
MAGNET system. The proxy EJB allows the SOAP service provider imple-
mentation to be as simple as possible and to be isolated from the exchange

28

implementation itself. See [10] for further discussion of the advantages of the
proxy design pattern.

Note that many other approaches exist for agent market location. See
Section 9.2.1 for a discussion of another approach that merits further inves-
tigation.

7.5 Market

The concept of MAGNET Markets also exists within the MAGNET system
as EJBs.

Customer agents interact with the EJBs representing MAGNET Mar-
kets through the use of SOAP services for obtaining Ontology information
(currently, only statistical information about the type of tasks a market
supports), submitting RFQs, and awarding bids. An execution monitoring-
related SOAP service provider is also expected to exist in the MAGNET
system in the future. The SOAP service providers interact with the MAG-
NET system through the use of a proxy EJB.

Supplier agents also interact with the EJBs representing MAGNET Mar-
kets through the use of the MAGNET system’s SOAP service providers. As
noted in Section 7.3, Supplier Agents may use the SOAP services to ob-
tain Ontology information, for registration in Markets, and to submit bids
against tasks in submitted RFQs. Supplier-related SOAP service providers
access the MAGNET system through a different proxy EJB than customer-
related SOAP service providers (thereby allowing the types of agents to be
treated differently in the proxy object layer if desired).

7.6 Market Sessions

Market Sessions exist within the MAGNET system as EJBs and are created
and/or accessed through use of the market-related SOAP services described
in Section 7.5. Session persistence is addressed through the use of entity
beans (which are persisted as needed through the use of the application
server’s database). Session-related EJBs are used by the RFQ, bid submis-
sion, and bid award SOAP services.

29

8 Prototype Implementation Work

8.1 Introduction

The revised MAGNET Architecture described in Section 7 of this paper has
been partially implemented as part of the work done for this Plan B Project.
The intent was to prove the validity of the new architecture by showing that
the recommended technologies work for implementing the new architecture.
As such, it is not a complete implementation of the new architecture and
focuses on using Apache SOAP for Customer Agent to Market communica-
tions. The work described in this section was also done to get the MAGNET
team started on implementing the new architecture.

8.2 Apache SOAP Integrated Into Communications Frame-
work

Agent-Market communications exist as SOAP service requests and responses
in the new MAGNET architecture. The existing implementation for Cus-
tomer Agent-Market communications (Java RMI) was replaced with Apache
SOAP as part of this Plan B Project.

8.2.1 Entire Protocol SOAP-serializable

One issue with the SOAP data encoding scheme is that the SOAP specifi-
cation only describes the mapping of simple data types to and from XML;
SOAP intentionally leaves serialization of complex objects up to SOAP ser-
vice requesters and providers. One of the nicer features of Apache SOAP
is that Apache SOAP provides a robust Java API, including several extra
classes for serialization and deserialization of Java objects, including the Java
Date class and any class that follows the JavaBean conventions. This allowed
the reuse of all the existing MAGNET protocol and customer protocol classes
with a minimum of effort.

In general, most MAGNET protocol classes follow the JavaBeans conven-
tion which allows Apache SOAP to serialize them with no additional effort.
Difficulty arose with the protocol classes that had complex state that could
not be completely read and written through JavaBean-standard assessor and
mutator methods (the Bid and RFQ classes). The current workaround for
the problem is a set of custom classes (MagnetXMLReader and MagnetXML-

30

Writer) that can encode and decode these two protocol classes to XML, which
is then put into a SOAP message as a simple String parameter. This is not
an ideal means of serialization and deserialization and is mentioned as an
area for future work in Section 9.2.2.

8.2.2 Example: SOAP-encoded JoblInfo request

This section contains an example of the SOAP-encoded response from the
JobService (the Ontology SOAP Service Provider) to a request for ontology
information from a Customer Agent (the SOAP service requester). The re-
sponse is a SOAP message containing an array of three JobInfo objects (only
one is shown in the XML for brevity). The Joblnfo class is a simple MAG-
NET class containing information about a particular task type supported by
a MAGNET market. (In the XML below, whitespace has been added for
clarity):

<?xml version=’1.0’ encoding=’UTF-8’7>
<SOAP-ENV:Envelope
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsi="http://www.w3.0rg/1999/XMLSchema-instance"
xmlns:xsd="http://www.w3.0org/1999/XMLSchema">
<SOAP-ENV:Body>
<nsl:getJobInfosResponse
xmlns:nsl="urn:JobService"
SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
<return
xmlns:ns2="http://schemas.xmlsoap.org/soap/encoding/"
xsi:type="ns2:Array"
ns2:arrayType="ns1:edu.umn.magnet.protocol.JobInfo[3]">
<item xsi:type="nsl:edu.umn.magnet.protocol.JobInfo">
<expectedDuration xsi:type='"xsd:double'">
11.0
</expectedDuration>
<supplierAvailability xsi:type="xsd:double">
0.11
</supplierAvailability>
<frequency xsi:type="xsd:double">1.0</frequency>
<taskType xsi:type="xsd:string">Task Type 1</taskType>

31

<description xsi:type="xsd:string">
Dave\'s neato JobInfo No. 1
</description>
<priceSigma xsi:type="xsd:double">
0.11
</priceSigma>
<resourceAvailability xsi:type="xsd:double">
0.11
</resourceAvailability>
<durationSigma xsi:type="xsd:double">
0.11
</durationSigma>
<expectedPrice xsi:type="xsd:double">
1100.0
</expectedPrice>
</item>
</return>
</nsl:getJobInfosResponse>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

8.3 MAGNET Customer Agent Integration

In the new MAGNET architecture, the Customer Agent interacts with the
market as a SOAP service requester through the use of the requester API,
which consists of separate classes that act as SOAP service requesters for
each of the SOAP services available to customer agents in the MAGNET
system. The following table lists the Service Requester class for each service
in the architecture. The table also lists the service provider used by the
customer agent in the MAGNET server.

32

Service Service Provider Service Requester
(Architecture) (Implementation) Class (Implementation)

Market Location = MarketListingService =~ MarketListingServiceClient
Service

Ontology Service JobService JobServiceClient

RFQ Service SynchRFQService SOAPSynchBidCollector
(Synchronous)

RFQ Service (Not Implemented) (Not Implemented)
(Asynchronous)

Bid Award (Not Implemented) (Not Implemented)
Service

Execution

Monitoring (Not Implemented) (Not Implemented)
Service

The MarketListingServiceClient and JobServiceClient classes are used by
the Customer Agent once, at the time of startup (via method calls in XAuto-
Customer and MagnetClientMain) to access the available markets and task
types.

The SOAPSynchBidCollector is a synchronous service requester class; it
will post an RFQ to the RFQ service and wait for all the resulting bids to
come back from the market. The synchronous Bid Collector is simple and
good for testing. It is expected that an asynchronous service will be imple-
mented as well, where the Customer Agent posts an RFQ into the MAGNET
system along with contact information; the system then responds with Bids
from the market as they are submitted from suppliers. Bid Collectors are
used by the Bid Manager component in the Customer Agent; the type of Bid
Collector to be used can be configured at runtime through the use of the Bid
Collector Factory and a property corresponding to the Bid Collector class to
be used.

Bid awards and Execution Monitoring are not currently supported by the
MAGNET system, so these services (requesters and providers) are not yet

33

implemented.

8.4 MAGNET Server Integration

The SOAP service provider classes used by the MAGNET system to expose
services to agents interact with a proxy EJB on the MAGNET server. The
following table summarizes the implemented SOAP service providers and the
method(s) on the proxy EJB (the CustomerSession session bean) that are
used to handle the request and return results:

Service Service Provider CustomerSession
(Architecture) (Implementation) Method (Implementation)

Market Location — MarketListingService — getMarkets()
Service

Ontology Service JobService setMarketName()
getJobInfos()

RFQ Service SynchRFQService setMarketName()

(Synchronous) getOpenSessions()
createNewSession()
submitRFQInSession()
getBidsForRFQInSession()

RFQ Service (Not Implemented) (Not Implemented)

(Asynchronous)

Bid Award (Not Implemented) (Not Implemented)

Service

Execution

Monitoring (Not Implemented) (Not Implemented)

Service

* As Supplier Agent integration has not taken place yet, it is not possible
for the getBidsForRFQInSession() method to return any bids. The SOAP
service currently generates its own bids in response to an RF(Q and returns
them to the Customer Agent for testing purposes.

34

9 Conclusions and Future Work

9.1 Conclusions
9.1.1 Importance of Architecture

Performing an analysis of the MAGNET architecture before design and im-
plementation could have saved the MAGNET team time and effort. In partic-
ular, requirements analysis and thought about MAGNET stakeholders (see
Section 2.1) would have led to discovery and documentation of the need for
MAGNET to service distributed agents over the Internet (the [BAP-1: Open
Communications] requirement). A lot of effort was put into implementing
MAGNET communication protocols that later had to be discarded. The orig-
inal MAGNET system was based on Java RMI, which is a “binary” protocol
and does not satisfy requirement [BAP-1: Open Communications]. CORBA
was analyzed and suggested for MAGNET implementation as well [7]. An
Internet standards-based approach (such as using SOAP or combining XML
and HTTP) might have been tried sooner if requirements had been better
understood and documented.

Documentation of architecture requirements and reference models helps
to avoid “Architecture By Implication” [2] since the architecture can be mea-
sured against the needs of stakeholders. Documentation of the architecture
derived from the requirements allows design and implementation to take
place within a high level structure, giving developers a common view of the
system to be built. A goal of this Plan B Project has been to place structure
on further MAGNET development through architecture design; the new ar-
chitectural framework clearly illustrates that extending MAGNET is just a
matter of implementing another SOAP service!

9.1.2 Internet-based Standards Powerful for Agent Communica-
tion

An important theme emerged during the development of this paper: the
Breadth of Agent participation is crucial to the success of MAGNET and
the key to providing the most opportunity for agent participation is to base
MAGNET on practical, widely used Internet standards. Furthermore, a
standards-based approach should be used in both the network transport and
data encoding portions of MAGNET communications; it is not enough to
support one or the other. Non-standards based transports do not traverse

35

network boundaries well (for example, consider HTTP versus Java RMI.)
Non-standards based data encoding leads to increased complexity in agent
implementations and rigid constraints on the content of messages; the agent
must understand the encoding and the message itself.

Apache SOAP was built on top of popular, accepted Internet standards
like HTTP and XML. The power of this approach became obvious with
the beginning of the prototype implementation; changes could be made on
agent code at home and tested against a market running on a server at the
University of Minnesota! The move to a standards-based approach meant
that network boundaries were of lesser concern; the agent communication
took place through the Internet Service Provider and University firewalls.

The development and use of MAGNET agents has become open to a
much larger community. Agents are free to negotiate within a MAGNET
environment which now may stretch across the entire Internet. Let the games
begin!

9.2 Future Work

This section briefly discusses future work related to the work performed for
this paper.

9.2.1 Exchanges and Service Discovery

A problem with the new MAGNET architecture is that of the non-standard
means by which services are discovered.

The ability to locate markets is an exchange-related function supported by
the MAGNET system. Market location capabilities are exposed to Customer
and Supplier Agents by means of a SOAP service provider in the MAGNET
system. The market names are merely listed by the service if the agent
has access to them. However, there is no standard way for agents to first
find the market location service, to find the exchange, or to find any other
SOAP service supported by the MAGNET system (currently the MAGNET
system is specified by an URL in the agent’s property file). Two interesting
technologies that may be used to overcome these limitations are UDDI and
WSDL.

Universal Description, Discovery, and Integration (UDDI) UDDI
is a standard for dynamic lookup, binding, and publishing of SOAP ser-

36

vices. It allows to queries of different UDDI registries to look up businesses,
information by business category, and service information. Agents could
use UDDI to find MAGNET services; UDDI should be investigated further.
See http://www.uddi.org for details.

Web Services Description Language (WSDL) A WSDL file may be
used to define a web services based on SOAP. WSDL files are being adopted
on both the client and server portion of SOAP communication to better
describe the type of communication that will occur between the two parties.

For instance, a WSDL file may describe that a particular message is sent
as input to a SOAP server and a particular message is sent in response to
that input. A WSDL file also describes at which URL and port a particular
Web service exists. MAGNET agents could access a UDDI directory to
obtain a WSDL description of the web services supported. WSDL should be
investigated as a means of publishing MAGNET services.

9.2.2 Implementation

The following implementation tasks need to be completed:

e Finish Customer SOAP services for bid awards and execution monitor-
ing.

e Implement the Supplier Agents services (Market Location, Ontology,
Supplier Registration, and Bid Submission).

e Asynchronous communications are not implemented; in particular, cus-
tomers should be able to receive bids asynchronously by submitting
RFQs to the correct service, and Supplier Agents should be able to re-
ceive RFQs asynchronously by registering in the Magnet system using
the appropriate service.

e The Bid and RFQ protocol classes should follow the JavaBeans stan-
dards closely so that they may be easily serialized and deserialized
using Apache SOAP; the current scheme of custom encoding classes
requires distribution of a common Document Type Definition (DTD)
and encoding classes that could be avoided entirely if standard SOAP
serialization could be used.

37

e Security should be implemented; an initial step would be to use Tom-

cat’s SSL (Secure Socket Layer) support for “wire” level security. Higher-
level security (authentication and the like) can be achieved through
the use of the SOAP envelope, which can contain multi-part (MIME-
encoded) information for items such as public keys.

References

1]

2]

Len Bass, Paul Clements, and Rick Kazman. Software Architecture in
Practice. Addison Wesley Longman, Inc., Reading, Mass., 1998.

William J. Brown, Raphael C. Malveau, Hays W. McCormick III, and
Thomas J. Mowbray. AntiPatterns: Refactoring Software, Architectures,
and Projects in Crisis. John Wiley & Sons, Inc., New York, NY, 1998.

Anthony Chavez and Pattie Maes. Kasbah: An agent marketplace for
buying and selling goods. In Proc. of the First Int’l Conf. on the Practi-
cal Application of Intelligent Agents and Multi-Agent Technology, Lon-
don, UK, April 1996.

John Collins, Corey Bilot, Maria Gini, and Bamshad Mobasher. Mixed-
initiative decision support in agent-based automated contracting. In
Proc. of the Fourth Int’l Conf. on Autonomous Agents, pages 247-254,
June 2000.

John Collins, Rashmi Sundareswara, Maksim Tsvetovat, Maria Gini,
and Bamshad Mobasher. Multi-agent contracting for supply-chain man-
agement. Technical Report 00-010, University of Minnesota, Depart-
ment of Computer Science and Engineering, Minneapolis, Minnesota,
2000.

John Collins, Maxim Tsvetovat, Bamshad Mobasher, and Maria Gini.
Magnet: A multi-agent contracting system for plan execution. In Proc.
of SIGMAN, pages 63-68. AAAT Press, August 1998.

John Collins, Ben Youngdahl, Scott Jamison, Bamshad Mobasher, and
Maria Gini. A market architecture for multi-agent contracting. In Proc.
of the Second Int’l Conf. on Autonomous Agents, pages 285-292, May
1998.

38

8]

[10]

[11]

[12]

[13]

14]
15]
16]
17)

[18]

[19]

Peyman Faratin, Carles Sierra, and Nick R. Jennings. Negotiation de-
cision functions for autonomous agents. Int. Journal of Robotics and
Autonomous Systems, 24(3-4):159-182, 1997.

David Flanagan, Jim Farley, William Crawford, and Kris Magnusson.
Java Enterprise in a Nutshell. O’Reilly & Associates, Inc., Sebastopol,
CA., 1999.

Erich Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns:
Elements of Reusable Object-Oriented Software. Addison Wesley Long-
man, Inc., Reading, Mass., 1995.

Dan Gisolfi. Web services architect, part 1: An introduction to dynamic
e-business. Technical report, IBM, 2001.

Dan Gisolfi. Web services architect, part 3: Is web services the reincar-
nation of CORBA? Technical report, IBM, 2001.

Object Management Group. The common object request broker: Archi-
tecture and specification. Technical report, Object Management Group,
Inc., 2001.

Jason Hunter and William Crawford. Java Servlet Programming.
O’Reilly & Associates, Inc., Sebastopol, CA., 1998.

Tarak Modi. Clean up your wire protocol with soap, part 1. JavaWorld,
March 2001.

Robert Orfali, Dan Harkley, and Jeri Edwards. Instant CORBA. John
Wiley & Sons, Inc., New York, NY., 1997.

Dirk Reinshagen. XML messaging, part 1. JavaWorld, March 2001.

Tuomas W. Sandholm. Negotiation Among Self-Interested Computa-
tionally Limited Agents. PhD thesis, Department of Computer Science,
University of Massachusetts at Amherst, 1996.

Bill Shannon. Java 2 platform enterprise edition specification, version
1.3. Technical report, Sun Microsystems, Inc., 1999.

39

[20]

[21]

22]

Katia Sycara and Anandeep S. Pannu. The RETSINA multiagent sys-
tem: towards integrating planning, execution, and information gather-

ing. In Proc. of the Second Int’l Conf. on Autonomous Agents, pages
350-351, 1998.

Michael P. Wellman and Peter R. Wurman. Market-aware agents for a
multiagent world. Robotics and Autonomous Systems, 24:115-125, 1998.

Peter R. Wurman, Michael P. Wellman, and William E. Walsh. The
Michigan Internet AuctionBot: A configurable auction server for human

and software agents. In Second Int’l Conf. on Autonomous Agents, pages
301-308, May 1998.

Edward Yourdon. Software Reusability:The Decline and Fall of the
American Programmer. Prentice-Hall, Englewood Cliffs, NJ, 1993.

40

