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Abstract

We present an auction-based method for dynamic allocation
of tasks to robots. The robots have to visit locations in a 2D
environment for which they have a map. Unexpected obsta-
cles, loss of communication, and other delays may prevent a
robot from completing its allocated tasks. Therefore tasksnot
yet achieved are rebid every time a task has been completed.
This provides an opportunity to improve the allocation of the
remaining tasks and to reduce the overall time for task com-
pletion. We present experimental results that we have ob-
tained in simulation using Player/Stage.

Introduction
There are many real-world problems in which a set of tasks
has to be distributed among a group of robots. We are in-
terested in situations where each task can be done by a sin-
gle robot, but sharing tasks with other robots will reduce the
time to complete the tasks. Search and retrieval tasks as well
as pickup and deliveries are examples of the types of tasks
we are interested in.

What distinguishes task allocation to robots from other
task allocation problems is the fact that robots have to phys-
ically move to reach the task locations, hence the cost of
accomplishing a task depends on the current robot location
and not just on the task itself.

We describe an efficient algorithm based on auctions to
perform task allocation. Our method does not guarantee an
optimal allocation, but it is specially suited to dynamic envi-
ronments, where execution time might deviate significantly
from estimates, and where it is important to adapt dynam-
ically to changing conditions. The algorithm is totally dis-
tributed. There is no central controller and no central auc-
tioneer, each robot auctions its own tasks. This increases
robustness and scalability.

The auction mechanism we propose attempts to minimize
the total time to complete all the tasks. Given the simplifying
assumption of constant and equal speed of travel for all the
robots, this is equivalent to minimizing the sum of path costs
over all the robots (Toveyet al. 2005). We are not as much
interested in obtaining a theoretically optimal solution,as in
providing a method that is both simple and robust to failure
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during execution. If a robot finds an unexpected obstacle,
or experiences any other delay, or loses communication, or
is otherwise disabled, the system continues to operate and
tasks get accomplished.

Our algorithm is greedy, and finds close-to-optimal solu-
tions that are fast to compute. It is flexible, allowing robots
to rebid every time a task is achieved. This provides an op-
portunity to produce a better allocation and increases the ro-
bustness of the system in case of unexpected problems or
delays. Rather than forcing a costly re-computation of the
entire optimal solution when a task cannot be achieved, the
algorithm uses multiple auctions to reallocate tasks.

In this paper we report scalability results with varying
numbers of tasks and robots (already reported in (Nanjanath
& Gini 2006a)) and we specifically address the problem of
performance in case of communication malfunctions.

Related Work
The problem we address is a subset of the larger problem of
coordination in a team. Our robots have to coordinate so that
all the locations of a given set are reached by a robot, but are
otherwise independent.

A recent survey (Diaset al. 2005) covers in detail the
state of the art in using auctions to coordinate robots for ac-
complishing tasks such as exploration (Dias & Stentz 2000;
Kalra, Ferguson, & Stentz 2005), navigation to different lo-
cations (Toveyet al. 2005), or box pushing (Gerkey &
Matarić 2002). Auction-based methods for allocation of
tasks are becoming popular in robotics (Dias & Stentz 2000;
Gerkey & Matarić 2003; Toveyet al. 2005) as an alterna-
tive to other allocation methods, such as centralized schedul-
ing (Chien et al. 2000), blackboard system (Engelmore
& Morgan 1988), or application-specific methods, which
do not easily generalize (Agassounon & Martinoli 2002) to
other domains.

Combinatorial auctions have been tried as a method to
allocate navigation tasks to robots (Berhaultet al. 2003) but
are too slow to be practical and do not scale well. They allow
tasks to be accomplished with maximum efficiency, but the
time taken in determining whom to assign which tasks often
ends up being more than the time for the tasks themselves.

Sequential single-item auctions tend to miss opportunities
for optimal allocation, even though they can be computed in
polynomial time. Our approach tries to find a tradeoff be-



Figure 1: The hospital environment. The top part of the figureshows the Stage simulation, with the locations of the tasks and
of the robots. (The active robot has its range sensor traces shown). The lower part shows the paths generated by the RRT
algorithm, with the location of the active robot on the pathsindicated by a square. This is one of the single robot experimental
runs, where only one robot is active.

tween computational complexity and optimality of alloca-
tions. We do not use combinatorial auctions, but we reauc-
tion tasks multiple times while they are being executed, so
allowing for a better allocation.

Recent work (Toveyet al. 2005; Lagoudakiset al. 2005)
has focused on producing bidding rules for robot naviga-
tion tasks that lower significantly the computational costs
but give up the guarantee of finding an optimal solution. The
method uses multi-round auctions, where each robot bids in
each round on the task for which its bid is the lowest. The
overall lowest bid on any task is accepted, and the next round
of the auction starts for the remaining tasks. Once all the
tasks have been allocated, each robot plans its path to visit
all the sites for the tasks it won. The bidding rules are such
that there is no need for a central controller, as long as each
robot receives all the bids from all the robots, each robot can

determine the winner of the auction.
Our approach differs in many ways. First, the auction-

eer determines the winner of the auction, so if a robot fails
to submit a bid (perhaps because of communication failure),
the auction can continue. Second, our approach is designed
for highly dynamic situations where unexpected delays dur-
ing execution or communication failures can prevent a robot
from accomplishing its tasks, or can make task accomplish-
ment more time consuming than originally thought. By
continuously rebidding and reallocating tasks among them-
selves during task execution, the robots adjust to changing
situations. When the environment is highly dynamic, com-
puting the optimal path to achieve all the tasks allocated to
a robot, as in (Lagoudakiset al. 2005), might not pay off,
because tasks are reallocated often.

Our approach is similar to the method presented in (Dias



et al. 2004) where a group of robots is given tasks to ac-
complish, and robots are selectively disabled in different
manners, in order to examine their performance under dif-
ferent conditions. Performance is measured in terms of task
completion. Their approach differs in that they do not as-
sume a time limit for task completion. Additionally they use
more complex robots, whose navigation and obstacle detec-
tion abilities are much better.

We have reported elsewhere (Nanjanath & Gini 2006b)
results of our algorithm when tasks have priorities, which
means the first few tasks receive more attention and later
tasks may be abandoned in favor of accomplishing earlier
ones. Upon reassignment, if a robot has received a higher
priority task than its current task, it postpones executionof
the current task to complete the higher priority one first.

Proposed Algorithm
In this work we assume that each robot is given a map that
shows its own location and the positions of walls and rooms
in the environment. No information is given about where the
other robots are located. The map allows a robot to estimate
its cost of traveling to the task locations, and to compute the
path to reach them from its original location.

Suppose a user has a setR of m robots R =

{r1, r2, ...rm}, and a setT of n tasksT = {t1, t2, ...tn},
where each task is a location a robot has to visit. The user
partitions the tasks intom disjoint subsets, such that

T1∪T2∪...∪Tm = T andTi∩Tj = φ ∀i, j1 ≤ i, j ≤ m.

and allocates each subset to a robot. Note that a subset can
be empty.

The initial task distribution done by the user might not
be optimal. Some robots might have no task at all assigned
to them, while others might have too many tasks, the tasks
assigned to a robot might be spread all over the environment,
and might be within easy reach of another robot, some tasks
may be in an unreachable location.

A robot must complete all its tasks unless it can pass its
commitments to other robots. Since the robots are cooper-
ative, they will pass their commitments only if this reduces
the estimated task completion time. The ability to pass tasks
to other robots is specially useful when robots become dis-
abled since it allows the group as a whole to increase the
chances of completing all the tasks. This process is accom-
plished via single-item reverse auctions, in which the lowest
bid wins, that are run independently by each robot for their
tasks.

Each bid is an estimate of the time it would take for that
robot to reach that task location (assuming for simplicity a
constant speed) from its current location.

To generate paths efficiently, robots use Rapidly-
expanding Random Trees (RRTs) (Kuffner & LaValle 2000).
Generation of RRTs is very fast, and scales well with large
environments. An example of a RRT is shown in Figure 1.

Auctions are parallel, i.e. many auctioneers may put up
their auctions at once, but since each bidder generates bidsin
each auction independently of the other auctions, the effect
is the same as having each auction done as a single-item
auction that the bidder either wins or loses. Robots compute

Repeat for each robotri ∈ R:

1. Activateri with a set of tasksTi and a list of robots
R−i = R - {ri}.

2. Create an RRT usingri’s start position as root.

3. Find paths in the RRT to each task location inTi.

4. Assign cost estimatecj to each tasktj ∈ Ti based on
the path found.

5. Order task listTi by ascending order ofcj .

6. ri does in parallel:

(a) Auction the assigned tasks:
i. Create a Request For Quotes (RFQ) with tasksTi.
ii. Broadcast the RFQ toR−i and wait for bids.
iii. Find the lowest bidbjk among all the bids for task

tj .
iv. If bjk < cj then sendtj to robotrk, else keeptj .

If rk does not acknowledge receipt, returntj to ri

Mark tj as assigned.
v. Ask rk to update its bids for the tasks left (rk has

now new tasks).
vi. Repeat from 6(a)iii until all tasks are assigned.

Robots that do not bid on tasks are ignored in the
auction.

(b) Bid on RFQs received from other robots:
i. Find a RRT path for each tasktr in the RFQ.
ii. Create a cost estimatecr for eachtr that the robot

found a path to.
iii. Send the list of costs to the auctioneer that sent the

RFQ.
(c) Begin execution of first assigned task:

i. Start executing the first tasktj by finding a path in
the RRT and following it as closely as possible.

ii. If new tasks are added as result of winning auc-
tions, insert them inTi keeping it sorted in ascend-
ing order of cost, and repeat from 6(c)i.

iii. If ri is stuck, auctionri’s tasks.
iv. If tj is completed successfully, restart from 4.

until timeout.

Figure 2: Task allocation algorithm.

their bids for all the parallel auctions assuming they startat
their current location. This can results in bids that over- (or
under-)estimate the true cost.

The algorithm that each robot follows is outlined in Fig-
ure 2. We assume the robots can communicate with each
other, for the purpose of notifying potential bidders about
auctioned tasks, for submitting their own bids, and for re-
ceiving notification when they won a bid. We show later
experimental results in case of partial communications loss.
A robot can choose not to bid on a particular task, based on
its distance from and accessibility to that task.

Once the auctioned tasks are assigned, the robots begin to
move to their task locations, attempting the nearest task first
(i.e. the task with the lowest cost).



When a robot completes its first task, it starts an auction
again for its remaining tasks, in an effort to improve the task
allocation. In case robots get delayed by unexpected obsta-
cles, this redistribution of tasks allows them to change their
commitments and to adapt more rapidly to the new situation.

If a robot is unable to complete a task it has committed to,
it can auction that task. Any task that cannot be completed
by any of the robots is abandoned. We assume that there is
value in accomplishing the remaining tasks even when not
all of them can be completed.

The robots are given a time limit to complete the tasks,
so that they do not keep trying indefinitely. When all the
achievable tasks (determined by whether at least one robot
was able to find a path to that task) are completed, the robots
idle until the remainder of the time given to them is over.

The algorithm allows for dynamical additions of new
tasks during the execution, but for simplicity, in the experi-
ments described in Section , the set of tasks and of robots is
known at start and does not change during the execution.

Experimental Setup and Analysis
We conducted experiments in the Player/Stage simulation
environment (Gerkey, Vaughan, & Howard 2003). We sim-
ulated robot deployment in complex 2-D worlds, using as
our test environment the section of the hospital world from
Player/Stage shown in Figure 1. The hospital world consists
of several rooms with small doorways and limited accessi-
bility, covering a total area of33 × 14m

2.
Each robot is simulated as a small differential drive vehi-

cle placed at an arbitrary location in the world. It is equipped
with 5 sonar sensors mounted at45

◦ angles across its front,
which are used for obstacle avoidance. While these sensors
allow the robot to avoid colliding into straight walls, robots
tend to get stuck on corners where they cannot detect the cor-
ner before colliding into it. This tend to produce unexpected
delays during the execution that vary greatly between runs.
Tasks are modeled as beacons placed at different positions
in the environment.

The experiments were run for 10 minutes each, to avoid
long runs when robots were unable to make much progress.
This also allowed us to test how often the robots could not
accomplish all the tasks in the allocated amount of time.

We ran each experiment 10 times, with the same initial
conditions, but with different initial task allocations. The
auction algorithm is sensitive to the order in which tasks are
given to the robots. To reduce this effect we supplied the
tasks to the robots in a random order each time an experi-
ment was run. This, combined with the inherently random
nature of the RRT generation algorithm, resulted in signifi-
cant variations across runs both in the allocation of tasks and
time taken to complete the tasks.

Experiments with different numbers of robots

We used different experimental setups, each with 16 tasks
placed in different rooms. We tested the setups with 1, 3,
and 10 robots, and ran a set of experiments with a single
auction (with no rebidding) to use as a baseline.
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Figure 3: Time spent trying to complete tasks in different
robot-auction combinations.
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Figure 4: Relative task completion rates for different robot-
auction combinations

Performance results are shown in Figure 3. The results
show the time taken to complete all the tasks that were ac-
complished in each run. We can observe that a single robot
takes longer, but, as expected, the speedup when using mul-
tiple robots is sublinear. A single round auction tends to per-
form worse than multiple auctions and has more variability
in the time needed to complete the tasks. This is consistent
with the observation that reallocation of tasks via additional
bidding tends to produce on average a better allocation. The
results are best when the number of robots and tasks is bal-
anced. When the task are few some of the robots stay idle,
when the tasks are too many with respect to the number of
robots the completion time increases, since each robot has
more work to do.

Figure 4 shows the percentage of tasks completed for each
run. Since the number of tasks was relatively large with re-
spect to the time available and the distance the robots had
to travel, very few runs had all the tasks completed. We can
observe that with a single robot only a small percentage of
the 16 tasks get accomplished in the time allocated. With
a more balanced number of tasks and robots a much larger
percentage of tasks gets done. We can see the differences
between runs when using a single round auction versus us-
ing multiple rounds. The performance of multiple rounds of



auctions is not consistently better than when using a single
round. Recall that in each experiment the initial allocation
of tasks to robots was different, and some allocations were
clearly better than others.

Experiments with Communication Loss
We ran a second set of experiments, where we modeled loss
of communication among the robots and its impact on task
performance. For this set of experiments we kept the num-
ber of robots fixed at 10, with 16 tasks placed in different
rooms in the hospital environment as in the previous set of
experiments.

Communications among the robots is modeled in terms
of two variables: range and efficiency. The range measures
how far the signal of each robot reaches. For the purposes
of these experiments, range has been set to the size of the
environment - all robots are within range. Communication
efficiency encodes the rate at which messages sent from one
robot to another actually reach the other robot. The cur-
rent experiments have been done keeping the efficiency uni-
formly across all the robots as 75%. With this setup, each
time a message is sent (the message may be the response to
an RFQ, or a task assignment on winning a bid), the message
has a 75% chance of actually reaching the desired recipient.
Results are reported in Table 1.

We assume that as long as a signal is available, actual
communication is instantaneous - issues such as signal being
interrupted in the middle of a transaction are not considered.

The possible error conditions are dealt with as follows:

1. If a robot does not receive notification of an RFQ, then the
robot simply does not respond, and hence its bids are not
considered in the computations for the task allocation.

2. If after assigning a task to a robot, the robot fails to accept
the assigned task, the task is taken back by the auctioneer,
and the original agent puts it back on its own task list.

3. In the event a set of tasks is missed because of communi-
cation failures, the robots bring the tasks back to auction
after a 10 second wait. This continues until either all the
tasks are completed or the time is up.

In order to maximize the chance of completing tasks, the
robots initially send a list of assigned tasks to each other,and
use the list to update their own task lists. Thus, a complete

Table 1: Communications Experiments. Results obtained
with 10 robots and 16 tasks with 75% and 100% communi-
cations efficiency. Task locations are the same across all the
experiments, but the initial task allocation to robots varies
randomly. Times are in seconds. Results averaged over 10
runs.

% Task Completion Rate Task Completion Time
Comm Mean Std Dev Mean Std Dev
75% 56.875 12.65 397.6748 31.92
100% 51.875 5.92 395.2361 24.18

copy of all the tasks assigned to date is maintained with each
robot. This list of tasks is updated whenever a task is com-
pleted by any robot (and the information reaches that robot).
This can lead to redundancy with multiple robots trying to
accomplish the same tasks. However, since the task lists are
synchronized periodically, this redundancy should be caught
before time is wasted.

The results of the experiments with communication loss
show that 75% communication does slightly better in task
completion than 100% communication but has a larger vari-
ance. This may be because the robots with no communi-
cation had less interference while performing tasks, though
they spent more time in completing them, or because of
a better initial task allocation. Something similar was ob-
served in the experiments reported in (Diaset al. 2004).
We will be conducting further analysis with different com-
munication rates, to track this further.

Conclusions and Future Work
We have presented an algorithm for allocation of tasks to
robots. The algorithm is designed for environments that are
dynamic and where failures are likely.

We assume the robots are cooperative, and try to mini-
mize the total time to complete all the tasks assigned to the
group. Each robot acts as an auctioneer for its own tasks
and tries to reallocate its tasks to other robots whenever this
reduces the cost. Robots also re-assess the current situa-
tion and attempt to improve the current task allocation by
putting their remaining tasks up for bid whenever they com-
plete a task. The process continues until all the tasks have
been completed or the allocated time has expired.

We removed any need for central coordination; tasks are
assigned in a distributed fashion, so that the system can re-
cover from single or even multiple points of failure. This
prevents us from using any centralized system, such as a
blackboard system (Engelmore & Morgan 1988), since this
will create a single point of failure.

Future work will include considering additional costs to
do tasks over the cost of reaching the task location, and
introducing heterogeneous robots having different speeds
and capabilities. We will also compare the performance
of our algorithm against the performance of other auction-
based task allocation algorithms, such as the one reported
in (Lagoudakiset al. 2005). There are tradeoff between
quality of the solution found and rate of change in the envi-
ronment that we will explore.
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