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Abstract— We present an auction-based method for the allo-
cation of tasks to a group of robots. The robots operate in a
2D environment for which they have a map. Tasks are locations
in the map that have to be visited by the robots. Unexpected
obstacles and other delays may prevent a robot from being able
to complete its allocated tasks. Therefore tasks not yet achieved
are rebid every time a robot accomplishes a task. This provides
an opportunity to improve the allocation of the remaining tasks
and to reduce the overall task completion time. We present
experimental results that we have obtained in simulation using
Player/Stage with this task allocation mechanism.

I. INTRODUCTION

There are many real-world problems in which a group
of robots is required to accomplish a set of tasks. We are
interested in situations where, while a single robot could do
all the tasks, sharing the work with other robots will reduce
the completion time. Therefore, we need a method to distribute
tasks efficiently to the robots.

We describe a fast method based on auctions to perform this
task redistribution. The method does not guarantee an optimal
allocation, but it is specially suited to dynamic environments,
where execution time might deviate significantly from esti-
mates, and where the ability to adapt to changing conditions
is the key to success.

Auctions have been suggested for allocation of computa-
tional resources since the 60s [1]. The Contract Net [2] is
perhaps the most well known and most widely used protocol
for distributed problem solving, where the agents that partic-
ipate in the bidding are cooperative and do not intentionally
lie about their commitments and costs.

Auctions are traditionally used with self-interested agents,
but there is a growing body of work on using auctions to allo-
cate tasks among cooperative agents. Auction-based methods
for allocation of tasks are becoming popular in robotics [3]–
[5] as an alternative to other allocation methods, such as
centralized scheduling [6] or application-specific methods,
which do not easily generalize [7] to other domains.

Task allocation can be done using combinatorial or single-
item auctions. In combinatorial auctions, all the tasks are pre-
sented for bidding and agents can bid on groups (bundles) of
tasks that they wish to have. Combinatorial auctions therefore
involve having to compute bids for every bundle of tasks in
the set of tasks, and to compute winners for the bundles. Their
computational and communication costs are too high to make
them practical for robots.

In sequential single-item auctions tasks are auctioned one
at a time, and they are assigned to the winner promptly. This
simplifies bidding and clearing the auction, but can miss the
optimal allocation. Because of their simplicity, single-item
auctions are typically used for robots [8].

In this paper we study the problem of allocating tasks to
robots, where tasks are simply locations in a map that have to
be visited by the robots. The problem of optimal allocation
then becomes a problem of optimal routing. It has been
shown [9] that producing an optimal allocation that minimizes
either (a) the sum of path costs over all robots, or (b) the
average path cost over all robots, or (c) the maximum path
cost over all targets is NP-hard.

The auction mechanism we propose tries to shorten the total
time taken to complete all the tasks. This is equivalent to
minimizing the sum of path costs over all robots, given the
assumption of constant and equal speed of travel for all the
robots. The algorithm we use finds close-to-optimal solutions
that are fast to compute. It is flexible, allowing robots to rebid
when solutions are unobtainable, rather than forcing a costly
re-computation of the optimal solution.

We are not as much interested in obtaining a theoretically
optimal solution, as in providing a method that is both simple
and robust to failure during execution. If a robot finds an
unexpected obstacle on its way, or experiences any other delay,
or is disabled, or loses communication we want to ensure the
system continues to operate and tasks get accomplished.

II. THE PROPOSED METHOD

Our method uses auctions to distribute tasks among a group
of robots. The tasks are modeled as locations on a map that
the robots have to move to within a fixed period of time. The
robots start at different points in the environment, and have to
move to their assigned task locations. We assume the robots
can communicate with each other, for the purpose of notifying
potential bidders about the auctioned tasks and for providing
bids to the auctioneer.

At the start, one of the robots in the group is given the entire
set of tasks to accomplish (perhaps by its human supervisor).
This robot then redistributes the tasks among the other robots
available. This redistribution is accomplished by means of
a first-price reverse auction, where one task at a time is
auctioned. The robot with all the tasks acts as the auctioneer.
The auction is a reverse auction, since the auctioneer is the
buyer.



Tasks are ordered by priority, which means the first few
tasks receive more attention; later tasks may be abandoned in
favor of accomplishing earlier ones. The tasks are auctioned
one at a time, starting with the highest priority task. As
each task is auctioned, the auctioneer selects the best bid
and assigns the task to the corresponding bidder. Tasks with
no bids are discarded, since the lack of bids implies they
are not reachable. There is no guarantee that each task can
be accomplished; some tasks may be in locations that are
inaccessible to the robots.

The robots are given the environment layout. They have
to generate paths through the environment and estimate the
distance to each task position according to the path generated.
They then use their estimate of the distance as their path cost
(and hence the value of their bid).

Each robot computes the distance to all the tasks that are up
for auction, considering each task in isolation. This simplifies
the computations. When a robot wins a bid, it has to recompute
its costs for all the remaining tasks, to account for the fact that
its position will be different due to the assigned task.

Since the environment is complex and dynamic, obstacles
may appear that were not originally in the map. Therefore,
there is a chance that a robot may fail to achieve its tasks or
take longer than expected. To deal with the situations where
robots fail to achieve their assigned tasks, we allow for re-
auctioning tasks when certain conditions are met. The auction
is done as follows.

Whenever a robot completes a task, all the tasks that are
still being executed by this or other robots, or are still pending,
are re-auctioned. This includes tasks that were not allocated in
previous rounds (thus new tasks can be assigned from external
sources after the robots have begun execution of their current
tasks). Until the re-auctioned tasks are assigned, the other
robots continue to do their tasks. Upon reassignment, if a
robot has received a higher priority task than its current task, it
postpones execution of the current task to complete the higher
priority one first.

When all the achievable tasks (determined by whether at
least one robot was able to find a path to that task) are
completed, the robots idle until the remainder of the time
given to them is over. New tasks can be assigned to any robot
anytime during the entire process, and the robot would simply
include those tasks in its allocation process.

The task reallocation allows for tasks that were difficult for
one robot to achieve (and hence took longer) to be reassigned
to others. In addition when a robot fails (gets stalled or
completely lost), it can put its tasks up for auction again,
for other robots to try and accomplish. This reallocation is
especially useful when the environment is highly dynamic or
the robots are prone to failures.

We show in Figure 1 an example of how our method of
auction with re-allocation of tasks differs from a single-task
auction and from a combinatorial auction. We show how the
methods would behave in an environment with 3 tasks, T1, T2

and T3, and 2 robots R1and R2. The combinatorial auction
(shown with dash-dot arrows) would examine the bids for

every possible combination of the tasks, and find the optimal
solution. This solution is to send R1 to do tasks T1 and T2,
and to send R2 to do task T3. The single-item auction (dashed
arrows) forces R2 to do both T2 and T3. This is because R2

starts closer to T2 initially, even though R1 could accomplish
T2 more easily, after completing T1. Our auction with re-
allocation method (solid arrows) first does the same as the
single-item auction, but when R1 reaches T1, it redirects R2

to T3, due to rebidding on the remaining tasks.

Fig. 1. Task allocation using a single-task auction, an auction with re-
allocation of tasks, and a combinatorial auction. Allowing re-allocation of
tasks gives considerable improvement in performance over the single-task
auction, but does not always yield an optimal allocation.

During task execution, the robots follow paths generated by
the method outlined below. To generate paths efficiently in
a complex environment, we use Rapidly-expanding Random
Trees (RRTs) [10]. RRTs are used for path planning when
good area coverage is required. They are appropriate for
environments where it is desired to reach every region, with-
out having costly extra computations for inaccessible areas.
Generation of RRTs is very fast, and scales well with large
environments. An example of a RRT is shown in Figure 2.

The RRT algorithm works as follows. We start with a root
node, which in our case is the initial position of the robot. The
RRT is expanded outwards in all directions from the root node.
To do this, a point P is chosen at random in the environment,
and an attempt is made to link P to points already in the RRT
(which initially is just the root node). If there is a line l joining
P to an RRT point which does not intersect any obstacles, then
a point Q is generated on l at a fixed distance from the RRT
point, and Q is added to the RRT. This is repeated till a certain
number of nodes is in the RRT, or a certain predetermined



Fig. 2. The hospital environment. The top part of the figure shows the Stage simulation, with the locations of the tasks and of the robots. (The robots have
their range sensor traces shown). The lower part of the figure shows the paths generated by the RRT algorithm. This is from the Mixed Task experiment, with
3 robots and 6 tasks.

amount of area coverage is achieved.
If the RRT node candidate points are chosen at random

from a uniform distribution over the environment, we get a
structure that grows outwards from the RRT root node very
rapidly, and does not have a large concentration of points in
any single area. With this method, we can efficiently cover a
complex environment, which can have many doorways, small
rooms and obstacles.

The RRT generated can then be used to find paths, by simply
tracing backward from a node that has line-of-sight access to
the task position, till the robot position (which is used as the
root node for the RRT).

A drawback of RRTs is that the path generated is not
necessarily the shortest possible path. Since the RRT nodes

in the path were generated randomly, the path often wanders
all over the place before reaching its destination. Therefore,
after each path is generated, the robots optimize it. The path
is optimized by finding shortcuts between RRT nodes that lie
on the path, and updating the path with the shortcuts obtained.
Thus, any direct routes existing between non-adjacent points
in the path is used to replace the original route between the
points in the path.

We present next experimental results and analyze the per-
formance of the auction with re-allocation method.

III. EXPERIMENTAL RESULTS

We tested our algorithm using Player/Stage [11] as the
simulation environment, using a section of the hospital world.



The hospital world section, shown in Figure 2, is a large
environment with many rooms, and is sufficiently complex
to provide a good test for the algorithm. Each grid square in
the figure is 1m2, so the entire world measures approximately
33× 14m2.

We modeled each robot as a small mobile device equipped
with range sensors (sonar) and differential drives. Each robot
has 5 sensors, mounted at 45◦ angles across the front of
the robot. Tasks were modeled as beacons placed at different
positions in the environment.

We used different experimental setups, each with a different
number of tasks and robots, placed in different initial locations
in the world. We did two sets of experiments, one (Experiment
Set I) where the only moving obstacles were robots, the other
(Experiment Set II) where additional moving obstacles were
present.

Each experiment was run for 10 minutes and repeated 10
times with the same initial starting conditions. The results were
averaged across experiments. Because of the random nature of
the RRTs generated, and because of unexpected situations, the
outcome of runs for each setup varied significantly both in the
allocation of tasks to robots and in the time taken to accom-
plish the tasks. This allowed us to test what happens when the
robots cannot accomplish all the tasks in the allocated amount
of time, and provided a way of avoiding very long runs in
hard cases when the robots did not make much progress.

In some runs the RRT nodes ended up being very close to
walls or corners. This made the navigation of the robot harder.
The robots could do only coarse-resolution control of their
speed and turn rate, so they often got stuck on corners, and
spent considerable time trying to free themselves. We could
have avoided most of these problems by forcing nodes to be
farther away from the walls, but we decided to use this to see
the effects of real world uncertainty on the robots.

A. Experiment Set I

The experiment setups for the first set of experiments are
summarized in Table I. The first three setups have tasks in
different places with the three robots starting at the same initial
positions. The robots ignored tasks that were unreachable, but
performed well in achieving the tasks that were reachable (see
Table I). Despite the fact that the set with one unachievable
task had harder to reach tasks, the robots were able to devote
more attention to the remaining tasks, and completed their task
assignments much faster than in the other two scenarios.

Figure 3 shows a breakup of the task completion times for
the Easy Task set. Each box shows the distribution of the time
taken to accomplish that task, over 10 runs of the experiment.

When we increased the number of tasks, so that there were
many more tasks than robots, the robots became busier. The
bidding process slowed as the number of tasks increased, but
not to an unmanageable extent. The robots also tended to
run out of time before they could finish all the tasks given.
The algorithm scaled up to 20 robots with 30 tasks without
noticeable slowdown in the achievement of tasks.

On the contrary, when we increased the number of robots to
be much larger than the number of tasks. the robots achieved
their tasks much faster. Each robot was generally assigned
only one task, and some were never allocated any tasks.

A side-effect of having many robots was that the robots
tended to get in each other’s way more often. The sonar
sensors could detect collisions only when the robots were
approached from certain angles. This meant they often did not
detect each other until collision had already occurred (since
the robots were small, they were often not detectable on the
sonar).

Table I shows a comparison of average completion times
over ten runs for all the tasks with the different environment
configurations. The experiment set with many robots and fewer
tasks had a very low completion time, while the one with many
tasks and few robots showed a much higher completion time
than the more mixed distributions. The table also shows the
percentage of tasks completed for the different environments.

Fig. 3. Time for task completion for 6 tasks in the Easy Task experiment.
For each task the figure shows the time it took to complete it. Times are
plotted using a box representation where the center line is the median value,
the top and bottom lines of the box represent the upper and lower quartile
values respectively, and the lines at the top and bottom of each plot represent
the rest of the distribution. The notches in the box represent an estimate of
the distribution’s mean. Outliers are marked with +.

B. Experiment Set II

To verify the performance of our algorithm with dynamic
objects, we did a set of experiments with additional moving
obstacles. The obstacles are modeled as thin rectangular
sliding doors placed in the long corridor at the top of the
hospital section. The obstacles move along the corridor to
restrict access to the rooms there. There are two obstacles
to each side of the corridor, for a total of four obstacles.

The intent was to measure deterioration in performance due
to the introduction of moving obstacles, so obstacles were
added until a significant deterioration in performance was seen.
We performed experiments in the Easy, Mixed, and More



TABLE I
EXPERIMENT SET I

Experiment Type Number Number Task Completion Times Task Completion Rates
of robots of tasks Mean Std Dev Mean Std Dev

Easy Task Distribution 3 6 228.73 52.55 91.67 14.16
Mixed Task Distribution 3 6 229.70 55.56 90.00 16.10
More Tasks than Robots 3 16 412.13 28.28 58.75 7.90
Unachievable Task Dist. 3 6 310.15 42.90 73.33 11.65
More Robots than Tasks 10 6 89.03 28.32 98.33 5.27
Large Task/Robot Set 10 16 239.46 39.04 76.25 10.94
Huge Task/Robot Set 20 30 280.24 22.80 65.00 5.27

TABLE II
EXPERIMENT SET II

Optimal Allocation Auction with Reallocation
Experiment Type Number Number Obstacles Task Compl. Time Task Compl. Rate Task Compl. Time Task Compl. Rate

of robots of tasks Mean Std Dev Mean Std Dev Mean Std Dev Mean Std Dev
None 170.66 50.09 93.33 11.65 177.45 59.82 91.67 14.16

Easy Task Distribution 3 6 Slow 276.92 96.02 73.33 22.50 240.46 54.74 85.00 12.30
Fast 193.27 61.20 90.00 14.05 229.83 84.61 85.00 24.15

None 174.99 68.30 91.67 14.16 185.59 63.68 90.00 16.10
Mixed Task Distribution 3 6 Slow 276.92 67.33 81.67 12.30 225.55 46.96 83.33 11.11

Fast 193.27 80.10 80.00 15.32 258.46 65.34 85.00 18.34
None 342.88 47.57 55.00 10.12 334.11 46.06 58.75 7.91

More Tasks than Robots 3 16 Slow 409.92 68.59 41.25 14.19 364.44 56.05 52.50 12.57
Fast 437.97 39.70 35.62 8.86 373.00 85.05 51.25 16.61

Tasks than Robots environments. The results are summarized
in Table II.

Three cases were examined: (1) there are no extra obstacles
other than the robots, (2) the extra obstacles move slowly
relative to the robots (at about 1/5th the robot speed), and
(3) the obstacles move at about the same speed as the robots.

We compared the performance of our method against a
method that generates the optimal allocation at the beginning
of the run and never changes it. For the Easy and Mixed
environments, the optimal allocation of tasks to robots was
computed geometrically. For the More Tasks than Robots en-
vironment the optimal allocation was approximated by running
multiple single round auctions and selecting the task allocation
that occured most often.

In the optimal allocation, robots are programmed to wait till
the obstacle, if any, moves out of the way. In our method when
a task cannot be achieved it is put up for bids. This implies
that with fast moving obstacles, the optimal allocation should
perform better than the rebidding method, simply because
waiting for a short time is faster that assigning the task to
a different robot.

The results show that the optimal algorithm performs
slightly faster in the default situation. When obstacles block
the way however, our algorithm performs better. What is
interesting is the change in performance when there are many
tasks, as seen in Table II, supporting our assertion that adapting
to the changing environment helps improve performance. The
number of tasks completed also shows a clear increase when
the robots follow our algorithm.

Our algorithm perfoms clearly better when stopping and

waiting for obstacles to move is no longer a rewarding strategy.
The robots tend to run out of time when doing so - and this
applies to the slow obstacles and the many tasks scenarios.
When the obstacles move fast, the optimal allocation gains
by being able to wait for the obstacles to move out of the
way - our algorithm wastes time rebidding and exchanging
tasks around. This could be prevented by adjusting a time-out
after which only rebidding occurs, or by adding some form of
obstacle tracking to find the speed of the obstacle and decide
how long to wait for completing the targeted task.

IV. RELATED WORK

A recent survey [12] covers in detail the state of the art
in using auctions to coordinate robots while accomplishing
different tasks such as exploration [3], navigation to different
locations [5], or box pushing [8].

The problem we studied is a subset of the larger problem
of coordination in a team. Our robots have to coordinate so
that all the locations of a given set are reached by a robot. A
single robot could in theory reach the entire set of locations to
be visited, assuming all the locations are accessible to it, but
having a team should increase efficiency and make the system
more robust to robot failures.

Combinatorial auctions have been tried as a method to
allocate navigation tasks to robots [13] but are too slow to
be practical and do not scale well. They allow tasks to be
accomplished with maximum efficiency, but the time taken
in determining whom to assign which tasks often ends up
being more than the time for the tasks themselves. Single item



auctions miss opportunities for optimal allocation, even though
they can be computed in polynomial time.

Box-pushing is a challenging task which requires the robots
to coordinate their behavior while moving boxes into demar-
cated regions. The method described in [8] uses a single-task
auction process. Task completion is dependent on robots with
the required capabilities being available. Using a single-task
auction resulted in resources getting assigned sub-optimally,
so that the robots could not complete some tasks that would
have been achievable with an optimal allocation.

Auctions for exploration tasks [3], [14] have multiple robots
placed in an unknown environment that is to be mapped. The
robots generate tasks themselves to decide what to explore
next, and auction the tasks to other robots in a single-item
auction. Exploring a region leads to a reward for the robot,
though the cost of resources used by the robot is deducted.
The robots try to maximize their own gain. Thus, failure of
a robot in the system is not critical since other robots would
move to explore the areas missed. The system however needs
a centralized agent to handle the rewards to be provided to the
robots.

Recent work [5], [9] has focused on producing bidding rules
for robot navigation tasks that lower computational costs while
providing a close to optimal solution. The method they propose
for generating bids has low cost, but requires all the robots to
communicate with each other, so that each robot can compute
its bid. The method uses multi-round auctions, where each
robot bids in each round on the task for which its bid is the
lowest. The overall lowest bid on any task is accepted, and the
next round of the auction starts for the remaining tasks. Once
all the tasks have been allocated, each robot plans its path to
visit all the sites for the tasks it won. The bidding rules are
such that there is no need for a central controller, as long as
each robot receives all the bids from all the robots, each robot
can determine the winner of the auction.

Our approach is designed for environments that are dynamic
and where failures are likely. Tasks are re-bid whenever a
robot accomplishes a task. This allows for re-assessing the
current situation and might result in reallocation of tasks to
robots. The advantage this provides is in allowing robots to
re-allocate tasks when tasks bring them to more advantageous
(or difficult) positions.

We have extended the method presented here to deal with
unordered tasks [15]. Task ordering forces a constraint on
which task gets allocated when. Unordered tasks give robots
more freedom in deciding the order in which to accomplish
them.

V. CONCLUSIONS AND FUTURE WORK

We have presented an algorithm for multiple robots to
bid on tasks. The algorithm is specially suited to dynamic
environments, where unexpected obstacles might prevent a
robot from achieving its tasks. The algorithm requires a robot
to rebid its tasks as soon as it has achieved one of its task, so
providing ways of adapting to changing conditions.

Future work includes improving the robot navigation to use
more feedback from the sensors, and to use the sonars for
some amount of environment remapping instead of relying on
it solely for obstacle avoidance. At present, the sonar sensors
allow the robot to avoid colliding into straight walls, but the
robots tend to get stuck on corners where they cannot detect
the corner before collision.

Adding methods for robots to decide whether or not to bid
on tasks could improve performance. At present, robots only
take into account their estimated distance from the task(s)
while bidding. This should be extended to accounting for other
factors such as whether they are stuck, how long they have
been trying to complete the current task, and whether it is
worthwhile after a substantial time investment to give up the
task.
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