
Repeated auctions for robust task execution by a robot team✩

Maitreyi Nanjanath and Maria Gini∗

Department of Computer Science and Engineering, University of Minnesota

Abstract

We present empirical results of an auction-based algorithmfor dynamic allocation of tasks to robots. The results have been obtained
both in simulation and using real robots. A distinctive feature of our algorithm is its robustness to uncertainties and to robot
malfunctions that happen during task execution, when unexpected obstacles, loss of communication, and other delays may prevent
a robot from completing its allocated tasks. Therefore tasks not yet achieved are resubmitted for bids every time a task has been
completed. This provides an opportunity to improve the allocation of the remaining tasks, enabling the robots to recover from
failures and reducing the overall time for task completion.

Key words: Task allocation, auctions, multi-robot teams

1. Introduction

An autonomous team of robots may be deployed in a situ-
ation that is dangerous or inaccessible to humans, such as a
building collapsed during an earthquake. The robot team can
be used to map the building, identify unsafe areas, and locate
and rescue survivors. Robots in the team will have different
tasks. The tasks could be assigned to each robot before deploy-
ment, but this would reduce the team’s ability to adapt to the
situation. Thus it is preferable to have the robots determine the
task assignments dynamically through negotiations withinthe
team.

In this paper we propose a method for distributing tasks dy-
namically among a group of cooperating robots. We are in-
terested in situations where each task can be done by a single
robot, but sharing tasks will reduce the time to complete the
tasks and thus has the potential to increase the efficiency of the
robot team.

What makes task allocation to robots challenging is the fact
that robots have to physically move to reach the locations of
their assigned tasks, hence the cost of accomplishing a taskde-
pends not only on the location of the task itself but also on the
current location of the robot.

In this paper we present empirical results obtained both in
simulation and with real robots using the algorithm we origi-
nally presented in [17]. The algorithm, which is based on auc-
tions, does not guarantee an optimal allocation, but is specially
suited to dynamic environments, where execution time might

✩Work supported in part by the National Science Foundation under grants
EIA-0324864 and IIS-0414466, and by the Industry/University Cooperative
Research Center for Safety, Security, and Rescue at the University of Min-
nesota.
∗200 Union St SE, Room 4-192, Minneapolis, MN 55455
Email addresses:nanjan@cs.umn.edu, gini@cs.umn.edu (Maitreyi

Nanjanath and Maria Gini)

deviate significantly from estimates, and where the abilityto
adapt dynamically to changing conditions is crucial.

The algorithm is fully distributed. There is no central con-
troller and no central auctioneer, each robot auctions its own
tasks and clears its own auctions. The only assumption we
make is that the robots can communicate with each other.

The auction mechanism we propose is based on a combina-
tion of sequential single-item auctions[16, 14] andrepeated
parallel single-item auctions[6]. It attempts to minimize the
total time spent to complete the tasks by minimizing the sum
of the path traversal times for all the robots and by imposinga
time limit for task execution. With the simplifying assumption
of constant and equal speed of travel for all the robots, thisis
equivalent to minimizing the sum of path lengths over all the
robots, as the MiniSUM objective in [19]. The time limit can
force reallocation of tasks, hence the algorithm’s secondary ob-
jective is to minimize task completion time (called MiniMAX
objective in [19]).

The algorithm we present is simple but robust to failures dur-
ing execution. It aims at finding a compromise between compu-
tational complexity, quality of allocations, and ability to adapt.
If a robot finds an unexpected obstacle, experiences any other
delay, loses communication, or is otherwise disabled, the rest
of the team continues to operate.

In this paper we describe the algorithm, analyze its complex-
ity, and report empirical results obtained both in simulation and
with real robots in a variety of environments.

2. Related Work

A recent survey [8] covers in detail the state of the art in using
auctions to coordinate robots for tasks such as exploration[13],
navigation to different locations [19], and box pushing [10].
Auction-based methods for allocation of tasks are becoming
popular in robotics [11, 19] as an alternative to other allocation

Preprint submitted to Elsevier April 27, 2009



methods, such as centralized scheduling [3], blackboard sys-
tems [9], or application-specific methods, which do not easily
generalize [1] to other domains.

Combinatorial auctions, where combinations of tasks are
bid at once, have been used to allocate navigation tasks to
robots [2]. The resulting allocation is optimal but due to the
computational complexity of combinatorial auctions, generat-
ing bids and clearing them is slow, and they do not scale well.

Sequential single-item auctions[14, 16, 19] auction tasks in-
dividually, but robots bid on tasks accounting for their previ-
ous commitments. This type of auction can be computed in
polynomial time producing solutions that, when the objective is
to minimize the sum of the path costs for all the robots, are a
constant factor away from the optimum [16]. Three objectives
are examined: MiniSum, minimizing the sum of the path costs,
MiniMax, minimizing the maximum path cost, and MiniAve,
minimizing the average path cost over all the robots. The bid-
ding rules are such that there is no need for a central controller.
As long as each robot receives all the bids from all the robots,
each robot can determine the winner of each auction. However,
this requires each robot to keep track of its own costs and of the
other robot costs, and so it is not robust to robot malfunctions.
Robots are expected to know the exact cost of completing each
task at the start. It is unclear how changes to this cost caused
by unexpected changes during execution can be handled.

Repeated parallel single-item auctions[6] auction each task
separately and treat it as independent of other tasks. The auc-
tions are repeated periodically after a fixed time interval.These
auctions are fast to compute and more robust. They make use
of a pulse that is sent out at fixed time intervals to all the robots
to restart the single-item auction between robots. This enables
robots to switch tasks if the allocation can be improved and
helps in case of unexpected problems, but has the undesirable
effect that the length of the entire path covered by the team
might be unbounded [19].

We also use single-item auctions, and we repeat the auctions
multiple times while the tasks are being executed. However,
instead of repeating the auctions at regular intervals, we repeat
them whenever a task has been completed. This reduces the
need for communication and the time spent in clearing auctions,
while still providing the ability to react to changes in the envi-
ronment or in robot functioning, typically without degrading
performance. In addition, we account for tasks won from an
auctioneer before bidding on subsequent tasks from the same
auctioneer, as in sequential single-item auctions. This reduces
the chance of an oscillatory situation where tasks keep getting
transferred back and forth between two robots, a problem that
affects the total path length in repeated parallel single-itemauc-
tions. We discuss the complexity of our algorithm in Section4.

Our approach is similar to the method presented in [7] where
a group of robots is given a set of tasks and robots are selec-
tively disabled in different manners in order to measure their
performance, i.e. the percentage of tasks completed, underdif-
ferent conditions. Our approach differs in that we assume a time
limit for task completion. Additionally we use robots that are
simpler and more prone to errors, hence the ability to change
task allocation is essential.

In Figure 1 we show an example of how a combinatorial auc-
tion, a sequential single-item auction, and a parallel single-item
auction differ from each other. The figure shows how the meth-
ods would behave in an environment with 4 tasks,T1, T2 T3

andT4, and 2 robots,R1andR2. Since some auction methods
are sensitive to task order, we assume in what follows that tasks
are bid in the orderT1, T2 T3, andT4.

The combinatorial auction (shown in Figure 1 with solid ar-
rows) examines the bids for every possible combination of the
tasks, and finds the optimal solution, which is to allocate task
T2 to R1, and to sendR2 to do tasksT4, T3 andT1, in that order.
The second diagram shows how the sequential single-item auc-
tion (shown with dot-dash arrows) would work. After winning
T1, R1 adds the cost of moving fromT1 to T2, and this is more
than the cost forR2 to go toT2. Hence,R2 wins T2. WhenT3

andT4 are auctioned,R1 wins both as its cost of going toT3

via T1 and toT4 via T1 andT3 is less than the cost ofR2 going
from T2 to T3 andT4. The ratio of path costs of the sequential
single-item auction compared to the combinatorial auctionis
1.079 : 1. The parallel single-item auction (shown in the third
diagram with dashed arrows) assignsT1, T3 andT2 (assuming
some path optimization is done) toR1, while R2 does onlyT4.
This is becauseR1 starts closer to the three tasks, even though
R2 could accomplishT3 andT1 more easily, after completing
T4. The ratio of path costs in this case is 1.155 : 1. Hence, the
sequential single-item auction achieves a better solutionthan
the parallel single-item auction, but it is sub-optimal compared
to the combinatorial auction solution.

T1 T4T3

R1

T2

R2

T1 T4T3

R1

T2

R2

T1 T4T3

R1

T2

R2

Figure 1: Task allocation using a combinatorial auction, a sequential single-
item auction, and a parallel single-item auction

Our algorithm combines both the sequential single-item auc-
tion and repeated parallel single-item auction, by runningsev-
eral sequential auctions in parallel and repeating the auctions
while the tasks are being executed in an attempt to improve
task allocation. When tasks are initially put up for auctionfrom
a single source, the algorithm starts like the sequential single-
item auction, but all remaining tasks are auctioned again after
each task is completed. Therefore in the example in Figure 1
our algorithm will behave differently if an obstacle between two
of the tasks is found after motion has begun; in that situation the
tasks are re-allocated accounting for the modified path for that
robot. If the tasks are initially distributed randomly between
the robots, the allocation might be worse since the tasks of each
robot are auctioned in parallel, but this will get correctedin the
next auction after the first task (which is the nearest accessible

2



task) is completed. Our algorithm is also geared to address fail-
ure on the part of one or more of the robots; the other robots
will take over those tasks and finish them themselves.

3. Auction Algorithm

In this work we assume that each robot is given a map that
shows its own location and the position of walls and rooms
in the environment. No information is given about where the
other robots are located and about other moving objects present
in the environment, or about any temporary change, such as
closed doors. The map is used by each robot to estimate, using
Rapidly-exploring Random Trees [15], its cost of travelingto
the task locations and to compute the path to reach them from
its original location. Generation of RRTs is very fast, and scales
well with large environments, so they are particularly appropri-
ate for dynamic situations where computing the optimal pathto
achieve all the tasks allocated to a robot, as in [16], might not
pay off, because tasks are likely to be reallocated. Examples of
RRTs for our experimental setups are shown later in Figure 5
and Figure 6.

Each robot is also given a list of the robots in the team. We
assume the robots can communicate with each other for the pur-
pose of notifying potential bidders of auctioned tasks, submit-
ting their own bids, and being notified when they won a bid.

Tasks are represented at a high-level by the location where
the task is to be done and the cost of doing the task. Tasks
are typically assigned by a user, but could be discovered au-
tonomously by the robots themselves and added to the set of
tasks as they are discovered. Tasks are assumed to be all equally
important, but we have addressed elsewhere how to deal with
tasks with priorities [18]. Robots typically do not know allthe
tasks, they are aware only of the ones assigned to them and dis-
cover the other tasks when they are auctioned.

Let Rbe the set ofn robotsR= {r1, r2, ...rn}, andT the set of
m tasksT = {t1, t2, ...tm}, where each task is a location a robot
has to visit. We partition the tasks inton disjoint subsetsT j ,
such that∪n

j=1T j = T andTi ∩ T j = φ ∀i , j 1 ≤ i, j ≤ n, and
allocate each subset to a robot. Note that a subset can be empty.

The initial task distribution might not be optimal. Some
robots might have no task at all while others might have too
many tasks, the tasks assigned to a robot might be spread all
over the environment, they might be closer to another robot,or
may be unreachable by the robot.

A robot must complete all its tasks unless it can pass its com-
mitments to other robots. To pass tasks to other robots, a robot
puts its tasks into a Request for Quotes (RFQ) and broadcasts
the RFQ to the other robots. A robot can choose not to bid on
a particular task, based on its distance and accessibility to that
task. Since the robots are cooperative and are trying to min-
imize task completion time, they will pass their commitments
only if this reduces the estimated task completion time. The
ability to pass tasks to other robots is specially useful when
robots become disabled since it allows the group as a whole to
increase the chances of completing all the tasks. Any task that
cannot be completed by any of the robots, for instance because

Repeat for each robotr i ∈ R:

1. Activate r i with a set of tasksTi and a list of the other
robotsR−i = R - {r i}.

2. Create an RRT usingr i ’s start position as root.
3. Find paths in the RRT to each task location inTi .
4. Assign cost estimatec j to each taskt j ∈ Ti based on length

of the path found starting from the current position.
5. Order task listTi by ascending order ofc j .
6. Establish communications with the other robots and build

a list of all the tasks (system task list) for reference.
7. r i does in parallel:

(a) Auction its tasks:
i. Create an RFQ with tasks inTi .
ii. Broadcast the RFQ toR−i and wait for bids for a

fixed time limit.
iii. Determine the lowest bidb jk among all the bids

received for taskt j . Let rk be the robot that sub-
mitted the winning bid.

iv. If b jk < c j then sendt j to robotrk, else keept j .
If rk does not acknowledge receipt, returnt j to
r i . Mark t j as assigned.

v. Ask rk to update its bids, if any, for the remain-
ing tasks inTi , ignoring tasks from other auc-
tions (rk now has a new task). Ifrk does not
acknowledge receipt, returnt j to r i .

vi. Repeat from Step 7(a)iii until all tasks are as-
signed.

(b) Bid on RFQs received from other robots:
i. Find a RRT path for each tasktr in the RFQ.
ii. Compute cost estimatecr for eachtr to which

the robot found a path, starting from its current
position.

iii. If a bid is won, recompute the bids for the re-
maining tasks in that RFQ, accounting for the
tasks assigned from that RFQ and submit bids
to the auctioning robot (This ignores tasks from
other auctions happening in parallel).

(c) Begin execution of the assigned tasks:
i. Find a path in the RRT to the first task (t j) and

start following it as closely as possible.
ii. If new tasks are added as a result of winning new

auctions, insert them inTi keepingTi sorted in
expected execution order, from the nearest task
to farther away ones, and repeat from Step 7(c)i.

iii. If stuck or unable to complete the current task
within the time promised in the bid plus a grace
period, start a new auction to reassign its tasks.

iv. If t j is completed successfully, notify all robots
of task completion, update the system task list,
and restart from Step 4.

until timeout or all tasks are completed.

Figure 2: Task allocation algorithm.

3



it is not accessible, is abandoned. We assume that there is value
in accomplishing the remaining tasks even if not all of them can
be completed.

This process is accomplished via multiple single-item reverse
auctions, in which the lowest bid wins. Auctions are run inde-
pendently by each robot for its own tasks. The algorithm that
each robot follows is outlined in Figure 2.

Each bid submitted by a robot is an estimate of the time it
would take for that robot to reach that task location (assuming
for simplicity a constant speed) from its current location.

Auctions are parallel, i.e. many auctioneers put up their auc-
tions at the same time, but since a bidder generates bids in each
auction independently of the other auctions, the effect is the
same as having each auction done as a single-item auction that
the bidder either wins or loses. Since a robot can bid for tasks
in multiple parallel auctions, the order in which tasks are exe-
cuted might be different from the order in which bids for tasks
are submitted and won. The robot cannot compute its bids ac-
cording to the order of execution, since the order is unknown
at the time of bidding. Therefore, the robot treats each auc-
tion in a round in isolation. It computes its bids for each par-
allel auction assuming it starts at its current location, taking
into account tasks that were won in that auction, but ignoring
tasks won in other auctions. This can result in bids that over-
(or under-)estimate the true cost. However, because tasks can
be reallocated in successive auctions, this does not impactthe
quality of the solution significantly.

In each auction the bid for the closest task is a correct esti-
mate because the robot accounts for all the tasks it won in that
auction. Bids for further away tasks might not be correct be-
cause of synergies or unaccounted costs among the tasks won
in other parallel auctions. If a task closest to a robot’s current
task is incorrectly assigned to another robot, the robot would
likely win that task back in the next round of auction (unless
that task gets completed before the next round) since now the
robot would have moved closer to that task.

Each bidder re-orders its tasks each time a new task is added
to its set, and moves immediately towards the nearest task (i.e.
the task with the lowest cost) in its current entire set of tasks.
Since auctions from different robots are done in parallel, the
nearest task could be awarded after the robot started moving.
In this case when the robot reorders its tasks it would discover
it has now a nearer task and therefore change its current desti-
nation.

When the robot completes its current task, it starts a new
auction for its remaining tasks. In addition to improving task
allocation this is specially useful when a robot gets delayed,
because this redistribution of tasks enables it to change its com-
mitments and to adapt more rapidly.

The robots are given a time limit to complete each task, so
that they do not keep trying indefinitely. Typically we use a
grace period of 10 seconds over the time used in the bid for that
task. If the task is not completed in that time limit, the robots
start a new auction to allow a change in allocation of that task.
When all the achievable tasks (determined by whether at least
one robot was able to find a path to that task) are completed, the
robots idle until the time given to them is over.

4. Auction Analysis

In analyzing the auction algorithm described in the previous
Section we make the following assumptions: (1) all robots are
working, (2) communications is perfect, (3) all tasks are acces-
sible, and (4) all tasks are initially assigned to a single robot.

Formally, the problem is defined as follows: Givenn robots
andm tasks, the setup of the tasks can be represented as a graph
G where tasks are the set of nodesT and paths between tasks
are the set of undirected edgesE. Each robot associates a cost
with an edge. The cost measure we use is travel time. Since
we assume constant and equal speed for all the robots, travel
time is proportional to path length. As the auction algorithm
proceeds, it assigns a subset of tasksT j to each robotr j , such
that T j = {t j |t j is assigned tor j and t j ∈ T} and all tasks are
assigned, i.e.∪n

j=1T j = T.
Each robotr j needs to find a path to the task subsetT j as-

signed to it. This is equivalent to solving the traveling salesman
problem for that robot. An approximation can be made using a
greedy path algorithm that takes the shortest path to the nearest
unvisited node. This has provable bounds, as follows. Build
a Minimum Spanning Tree (MST) overT j rooted at the node
nearest tor j . Let the sum of costs of edges in the MST be de-
noted byK j . Then, the greedy path algorithm has a cost bound
of 2 × K j + C j whereC j is the cost for the robot to reach the
root of the MST (from [5], Chapter 35, Sect. 35.2.1).

The overall team cost is then bounded by

Ctotal =

m∑

i=1

(Cti) +
n∑

j=1

(2× K j +C j)

whereCti is the individual task cost for taskti . For simplicity
we assume task costsCti = 0 for 1≤ i ≤ m.

The objective is to find an allocationS overT, such thatS
minimizes (2× K j +C j) for 1 ≤ j ≤ n, subject to the constraint
timetotal ≤ timelimit. If multiple solutions are found with the
same minimum cost, the solution which minimizestimetotal is
chosen.

In Table 1 we compare the computational complexity of our
algorithm with the complexity of sequential single-item auc-
tions and repeated parallel single-item auctions.d is the sum
of the path costs for all the robots in the optimal solution, i.e.,
the one that minimizes the sum of path costs for all the robots.
i is the communication pulse interval, i.e. a signal broadcast
to all the robots which triggers a new round of auctions [7]),
andt is the completion time to execute all the tasks. Since the
initial task allocation in our algorithm matches that of a sequen-
tial single-item auction [16], we can use their complexity anal-
ysis results to our algorithm. Subsequent auctions can result
in added path costs; these are accounted for in our complexity
analysis, as shown next.

4.1. Analysis of Path Length

In our algorithm, items are sold individually and each robot
accounts for tasks it already won from the current auctioneer
before bidding further on new tasks from the same auctioner.
To bid on a new task a robot computes the difference in the cost

4



Method Time complexity Sum of Path Costs Initial Comm. Overall Comm.
Sequential Single Item Auctions [16] O(n×m) 2× n× d n×m N/A
Repeated parallel single item auction [7] O(n×m) unbounded n×m2 n×m× t/i
Our Algorithm O(n×m2) (3× n− 2)× d n×m n×m

Table 1: Performance comparison between auction methods.n the number of robots,m the number of tasks,d the total path cost for all the robots in the optimal
solution,i is the communication pulse interval, andt the completion time to execute all the tasks.

of the path that includes the new task from its previously com-
puted path cost, and bids that difference. This is similar to the
method of bidding described in [16] for the MiniSUM objective
(using the bidSumPath strategy, which bids based on an approx-
imate shortest path through all the tasks to be completed by that
robot), but differs in the handling of multiple auctions, where
each auction is considered independently of the others. It also
differs because the overarching objective is trying to complete
all the tasks within the time limit, so if a task takes too longto
complete, it may get reassigned to a different robot. Given a
large number of tasks and few robots, the time limit might not
be sufficient to complete all the tasks using the MiniSUM ob-
jective. Thus, the objective becomes similar to the MiniMAX
objective in [16].

T6T1

T2 T5

T3
T4

R1

R2

T6T1

T2 T5

T3
T4

R1

R2

T6T1

T2 T5

T3
T4

R1

R2

Figure 3: Task allocation for the MiniSUM objective (left),compared with
MiniMAX (center) and with the allocation obtained by our algorithm (right).

Figure 3 shows a set of tasks to be completed by two robots.
With MiniSUM, the first robotR1 wins all the tasks. With
MiniMAX, the two robots divide the tasks among themselves,
to minimize the maximum path length traveled by each robot.
Let’s assume that the time to complete all the tasks using Min-
iSUM is longer than the time limit the robots are given. Then
in our algorithm, after the initial MiniSUM allocation, robot
R1 would transfer some of its tasks toR2. This results in the
rightmost allocation, whereR1 has just enough time to com-
plete tasksT1 throughT4 and the remainder are taken byR2.

The bound on the path cost after the initial minimization is
equal to the MiniSUM bound of 2× d whered is the optimal
path cost [16]. The reassignment of the tasks that exceeded
the time limit would increase this bound as follows. Each of
the tasks reassigned will go to a different robot, and can add
a maximum of 2× d to that robot’s path cost (since paths are
recomputed to approximately minimize travel). Since the path
length would decrease for at least one robot, the total increase

in path length at most is (n− 1)× 2× d. Thus the bound on the
path length is no more than the MiniMAX bound of 2× n × d
([16]). When the number of tasks is large enough so that any
allocation exceeds the time limit, our algorithm uses the Mini-
MAX objective. Therefore, the upper bound on the sum of path
costs if the robots follow their initial allocation after the first
auction is 2× n × d ([16]). Following the initial allocation, in
subsequent auctions, tasks may either stay with the same robot
or be reassigned. With the exception of a special case (dis-
cussed next), reassignment is equivalent to having the initial
auction with tasks in the reassigned order, and hence will only
result in improvement. The special case occurs when two task
allocations are nearly equivalent, and the robots keep switching
between the two allocations in each auction. In this situation,
since the number of auctions is limited by the number of re-
maining tasks, the maximum increase is (n − 2) × d (the time
taken by the remaining robots to reach those tasks). Thus, the
bound on the cost becomes (3× n− 2)× d.

Our auction method avoids the trap of parallel single-item
auctions, where robots may all travel a long distance to reach a
cluster of close together tasks, instead of having just one robot
completing the tasks in that cluster [19]. This is achieved by
making robots account for tasks already won from an auctioneer
in any further bidding in the same auction. This ensures thatif
an auctioneer is auctioning tasks that are close to each other,
the robot which wins one of those task from that auctioneer
will continue to win subsequent nearby tasks from the same
auctioneer. If nearby tasks were incorrectly given to a different
robot previously, they will get reassigned to the closest robot,
even when they are auctioned by different auctioneers. This is
because independently of which robot auctions that task, the
closest robot will bid its distance to that task, and will winthe
task since that would be the smallest bid. Over multiple auction
rounds, this implies that tasks will tend to get assigned in groups
to specific robots, based on their positions.

4.2. Analysis of Communications Complexity
The robots in our algorithm have more communication needs

than the robots in [16], since in our case communication con-
tinues after the initial allocation, whenever there is an auction.
There aren messages per auction, one per robot, andmauctions
(The initial auction+ 1 auction per task completed, with the ex-
ception of the last task). Therefore, a total ofn × m messages
are sent.

Failure of communication before the start of execution is a
problem because tasks may never get shared between robots,
and some tasks may remain undone. However, if communica-
tion failure takes place later, then the working robots can handle

5



the additional tasks, and the problem can be treated as a modi-
fied one where the number of robots has gone down ton−k, if k
robots are out of commission. Givenk possible breakdowns, we
need extra rounds of auctions for the tasks of the failed robots,
thus resulting inn × m+ n × k = n × (m+ k) communication
messages.

The number of messages we need is considerably smaller
than the number needed for repeated parallel auctions, where
tasks are placed for bidding continuously, so that communica-
tions takes place all the time.

5. Experimental Setup

We evaluated our algorithm through experiments done both
in simulation and with real robots. Due to space and equipment
constraints, we were limited to two robots for the real robotex-
periments, but were able to perform different and more complex
experiments in simulation.

Experiments were performed with the Player/Stage [12] sim-
ulator. Player/Stage has the advantage that implementation de-
tails do not change significantly when shifting from simulation
to real robots, thus making comparison easier. The experiments
performed in our robotics lab used two Pioneer I robots, each
mounted with a laptop and equipped with a wireless card for
communication with each other. Communication was done
through Java Sockets, since they provide features similar to
what is available in the simulated system. The algorithm al-
lows for dynamic addition of new tasks during execution, but
for simplicity in the experiments the set of tasks and of robots
is known at start and does not change during the execution.

Additional simulation experiments done earlier have been re-
ported in [17, 18]. Their purpose was to evaluate the effective-
ness of our auction algorithm in comparison to using a single
initial auction, to measure the impact of loss of communication
and of changes in the environment, and to measure the robust-
ness of the algorithm. The earlier experiments used robots with
5 sonar sensors and differential drives, scattered in the hospital
world environment provided by Player/Stage.

In this paper we report results on experiments conducted in
three scenarios, a simplified building scenario we use for com-
parison of different algorithms in simulation, a lab scenario,
where we performed experiments both with real robots and in
simulation, and a more complex building scenario, where we
performed experiments only in simulation.

5.1. Adaptations for Real Robots
There were some non trivial differences we had to deal with

between the simulation and the real robot experiments.

1. Player 2.0 has significant differences in the way real robots
move in comparison to the simulation. The same com-
mand produced in simulation a differing range of motion
than when given to a real robot. Thus, motion commands
had to be reconfigured to suit the robots.

2. Data for ranges of goals, sonar ranges, and collision ranges
had to be modified to suit the real robots, since the form
factor of the real robots was considerably different from
that of the simulation.

3. In the simulation, all obstacles were detectable through
sonars. In the real robot experiments, however, robots oc-
casionally could not detect obstacles, such as table legs,
because the sonar sensors were too far apart and missed
the obstacle. This resulted in several collisions and near
collisions in the real robot experiments, and produced far
more variability in task completion times than what we
had seen in the simulations. Details on the task comple-
tion times can be seen in Table 3 and Table 4.

4. Odometry in the real robots was significantly worse than
that accounted for in the simulations. In most cases, un-
less there was a tight fit, the robots completed all the tasks
without collision. Tasks were considered to be complete
when the robots arrived within 30 cm of the task (i.e. an
approximate robot-length away from the task). Collisions
were tolerated in simulation; in the real runs, robots that
had collided with obstacles were given one chance to re-
cover and then shut down, to avoid damage.

6. Experimental Results

The main purpose of the experiments was to (1) compare the
performance of our algorithm to other algorithms, specifically
in terms of length of the solution paths found in different en-
vironments and under different conditions, such as presence of
moving obstacles, (2) evaluate the performance of different as-
pects of our auction algorithm, such as auction time and com-
munication overhead during execution, and (3) validate thesim-
ulation results by comparing simulation with real robots results.

6.1. Simplified building scenario

We performed simulation experiments with a simple setup
that would allow us to compare the following:

1. The optimal path length.
2. The path length given an initial assignment that is opti-

mal, but using RRTs to compute the paths. RRTs do not
produce the shortest path, so using them gives us a fair
baseline for comparison. Since RRTs are generated for
each run and they are different in each run they introduce
additional variability in the path lengths across runs.

3. The path length using one round of parallel single item
auction. Given the layout of the tasks, repeating paral-
lel single item auctions would keep the same allocation of
tasks to robots, so in this case a single round acts like re-
peated rounds.

4. The path length using our algorithm of repeated sequential
single-item auctions.

Figure 4 illustrates the environment used, and the paths that
were found by the different algorithms. The environment is
16× 16 meters. We ran 20 experiments in each scenario.

The results are summarized in Table 2. The results show the
effect of using RRT-based path finding - while very effective in
large environments with multiple rooms, in small rooms RRTs
can produce suboptimal results. In this case, even if we start
with a fixed optimal allocation, RRTs increase the average path

6



(a) Paths for optimal task allocation (b) Paths for optimal task allocation, computing paths withRRT

(c) Paths computed using parallel single-item auctions (d) Paths computed using our algorithm

Figure 4: Layout in the simplified building experiments, comparing the optimal paths with the paths produced by parallelsingle-item auctions and by our algorithm.

length. The parallel single item auction results in assigning all
the tasks in the upper half-plane to robotR0, and those in the
lower half plane to robotR1, regardless of the order in which the
tasks are auctioned. This increases the path length, as shown
in Table 2. The performance of our algorithm is close to the
optimal performance, and on par with starting with an optimal
allocation.

Assuming that the underlying distributions are normal, we
conducted unpaired two-tailed Welch’s t-tests to compare the
path lengths produced by our algorithm with the ones obtained

when starting with an optimal allocation and the ones using par-
allel single-item auctions. There is a significant difference in
the results for parallel single-item auctions vs. both the initial
optimal allocation with RRTs (t(37.66) = 26.458, p = 6.24 ∗
10−26) and our algorithm (t(22.67) = 11.83, p = 3.54∗ 10−11).
This supports the hypothesis that parallel single-item auctions
produce paths whose length is significantly different from op-
timal and from what our algorithm computes. The comparison
between our algorithm and the initial optimal allocation with
RRTs showed that the difference was not significant (t(23.43)=

7



Table 2: Length of minimum, maximum, and average path traveled in the exper-
iments in the simplified building scenario. Path lengths aremeasured in meters.
The environment is 16× 16 meters. Results obtained over 20 runs. Results
shown for optimal allocation, optimal initial allocation using RRTs, parallel
single item auction, and our algorithm

Algorithm Min path Max path Average path
(m) (m) Mean (m) σ

Optimal using RRT 34.00 39.73 36.90 1.69
Parallel single-item 48.10 53.77 50.45 1.54
Our algorithm 33.07 50.98 36.78 4.93
Optimal path 31.64

0.103, p = 0.919), supporting the observation that our algo-
rithm performs well compared to the optimal allocation.

6.2. Lab scenario

For the real robot experiments, the robots were given a map
of the lab which did not include chairs but included table po-
sitions, and were given a description of the team, includingthe
wireless identifiers of the other robots. The robots startedat dif-
ferent locations, and were given their own approximate position
in the map. The tasks were scattered randomly in the lab and
were initially divided equally between the two robots.

To ensure all tasks were done, when a robot had completed
all its assigned tasks, it would wait a fixed amount of time (usu-
ally the amount of time the other robot had provided as its low-
est bid) waiting for another robot to start a new auction. If any
task in the system task list maintained by the robot was stillin-
complete and no auction had been started, the robot would start
a new auction for the incomplete tasks.

The two experimental setups in the lab are illustrated in Fig-
ure 5 and Figure 6. The figures also show the RRTs formed by
each robot in one of the runs.

Figure 5: Experiment I map: robots are circles and tasks are asterisks. The
RRTs for run 4 are shown.

In Experiment I there were six tasks scattered randomly in
such a way that an optimal task allocation would result in an

Figure 6: Experiment II map: robots are circles and tasks areasterisks. The
RRTs for run 3 are shown.

uneven distribution of the tasks between the robots. In Experi-
ment II there were eight tasks distributed initially such that the
majority of the tasks given to robotR0 were closer to robotR1

and vice versa. This was done to examine if the robots ex-
changed tasks successfully and completed them correctly.

We performed 5 runs of each experiment type individually,
both in simulation and with the real robots.

The performance of the real robots in experiment II is shown
in Figure 7. We can notice that the allocation of tasks is not
the same in the different runs.For instance, in run number 4 of
Experiment I, shown in Figure 5, task 0 was auctioned first but
due to the way the RRT curved, the estimated cost for task 5
by robotR0 was very high (it added the cost of going to and
returning from task 0 to its cost estimate). RobotR1 initially
won task 2 because it had a lower cost estimate, but robotR0

won it back after it completed task 0.
The task completion times for the lab scenario experiments

are summarized in Table 3 and Table 4. In each case, the robots
completed the assigned tasks within 2 minutes, staying well
within the 10 minute time limit provided.

Table 3: Task completion times (in seconds) for Experiment I. Results shown
are averaged over 5 runs.

Task Assigned Robot Real Robots Simulation
ID Initial Final Mean (s) σ Mean (s) σ

0 0 0 33.478 12.78 13.796 0.75
1 0 1 35.443 10.82 14.180 2.67
2 0 1 35.018 5.12 11.828 2.21
3 1 1 21.707 3.56 18.755 6.06
4 1 1 28.041 9.48 7.135 0.62
5 1 0 17.872 12.28 22.910 2.27

Total 121.618 16.53 52.955 7.01

In run number 3 in Experiment II (Figure 6), robotR0 ini-
tially got stuck trying to get to task 6, and then completed the
remaining tasks, but was much slower than usual in completing

8



Figure 7: Experiment II real-robot timeline. Runs 1 through5 (top to bottom)

Figure 8: Experiment II simulation timeline. Runs 1 through5 (top to bottom)

Table 4: Task completion times (in seconds) for Experiment II. Results shown
are averaged over 5 runs.

Task Assigned Robot Real Robots Simulation
ID Initial Final Mean (s) σ Mean (s) σ

0 0 1 16.771 1.51 7.495 0.39
1 0 1 29.678 0.47 11.528 1.79
2 0 0 46.727 3.90 18.478 1.75
3 0 0 27.470 4.31 29.268 14.08
4 1 1 35.404 9.76 11.004 2.79
5 1 0 42.060 23.96 8.773 1.81
6 1 0 36.862 15.44 8.593 3.18
7 1 1 22.719 3.39 12.610 0.40

Total 151.185 39.04 53.642 1.72

the first two tasks, probably because of low battery.

The simulation experiments in comparison did not show
robots getting stuck as often. The timeline for simulation ex-
periment II is shown in Figure 8. A significant difference was
a long initial auction time in simulation as compared to the real
robots. This was likely caused by the fact that the computers
used in the simulation shared a network and hence took longer
to initially establish connections than the robots which had a
dedicated network. This resulted in initial auction times on the

order of 1.6 seconds in the first auction, dropping to 0.3 seconds
subsequently. While the real robots also had a longer initial
auction, such a large drop was not seen in the auction times.

Task completion times in simulation were significantly
shorter than the corresponding times in the real robot experi-
ments, as shown in Table 3 and Table 4.

Table 5: Auction times (in seconds) for Experiments I and II.Results shown
are averaged over 5 runs.

Experiment Real Robots Simulation
Mean (s) σ Mean (s) σ

I (6 tasks) 0.4052 0.1861 0.5527 0.5797
II (8 tasks) 0.4322 0.2412 0.4865 0.4938

The auctions took a very small percentage of the total time
(as shown by the light grey bands in Figures 7 and 8, and sum-
marized in Table 5), and caused small delays between one task
and the next. This accounted for less than 1% of the time spent
in performing the tasks. Communication time was also a very
small fraction of the time taken to complete the tasks (on aver-
age, communications took up less than 1% of the work-time).

We can summarize the comparison between simulation and
real robots as follows:

• Algorithm performance: The task allocation found in sim-
ulation was identical to that found in the real robot exper-

9



Figure 9: Stage image of the building scenario used in Experiment III. Figure 10: Simulation experiment III: An example showing the paths fol-
lowed by robotsR0, R1 andR2.

iments, thus the simulation results were acceptable as pre-
dictors of the real robot performance. However, the impact
of the time taken to perform the auctions was significantly
less with the real robots compared to simulation, since ex-
ecution times were much shorter in simulation.
• Time: the simulated robots moved faster than the real

robots, despite the fact that we tried to find an equivalent
velocity setting; thus, the auctions took a more significant
portion of simulation time than they did in the real robot
experiments. This speed difference also required modifi-
cations to the range parameter settings to get equivalent
settings for the real robots as compared to simulation.
• Robot performance: The simulation was much more op-

timistic about the ability of the robots to detect obstacles
and recover from errors; in the real robots, there was a
tendency to get stuck that was not seen as frequently in
simulation.

In conclusion, the simulation experiments were good indica-
tors of real world performance, though some problems faced by
actual robots were not perfectly mirrored in simulation.

6.3. Building scenario

We have also evaluated our auction algorithm in the envi-
ronment described in [19], with 18 tasks and three robots (Fig-
ure 9). This environment is more complex than the lab environ-
ment, because there are numerous rooms and doors connect-
ing them, so the navigation is harder. The major reason for
choosing this environment is to enable comparison of results
produced by different algorithms in the same environment. We
used two different experimental setups. In Experiment III we
used the same layout as the one used in [19]. In Experiment

IV, we added moving obstacles in four locations (in the corri-
dors and in front of doors) that hinder robot movement. We
performed 10 runs for each of these experiments.

The paths followed by the robots in one of the runs for Ex-
periment III are shown in Figure 10. The path followed by the
robot on the left shows squiggly lines where the RRT was fol-
lowing the wall too closely. The obstacle avoidance routines
would force the robot away from the wall, but the path to be
followed would bring it back close to the wall. This kind of
movement was happening often due to the tendency of RRT
nodes to be generated close to walls when in an environment
with many rooms. However, this did not cause a significant
negative impact on the motion of the robot, when overall per-
formance is considered.

The experiments show that the robots were able to success-
fully complete the tasks scattered in the environment, generat-
ing paths comparable to those shown in [19]. However, a direct
comparison with [19] is not possible due to differences in scale,
number of tasks, and positions.

In Figure 11 we show the environment used for Experiment
IV. There are four obstacles, shown as small rectangles, that
move across the corridor or in front of a door. The paths fol-
lowed by the robots in one of the runs for Experiment IV are
shown in Figure 12.

The experiments with moving obstacles showed only small
differences from the ones without obstacles, as can be seen in
Table 6. In the runs with obstacles the robots successfully coped
with moving obstacles, showing on average only a 5% increase
in path length. Similarly completion time averaged 6 min and
47 sec without obstacles, and showed an increase of approxima-
tively 10% (to 7 min and 30 sec) in the case of obstacles. The
variance in average distance traveled was greater in the runs

10



Figure 11: Stage image of the building scenario with obstacles used in Ex-
periment IV. The obstacles move along their longer axis.

Figure 12: Simulation Experiment IV: an example showing thepaths fol-
lowed by the robots when obstacles are present.

0 50 100 150 200 250 300 350 400 450 500

Robot 0 

Robot 1 

Robot 2 

Robot 0 

Robot 1 

Robot 2 

Robot 0 

Robot 1 

Robot 2 

Robot 0 

Robot 1 

Robot 2 

Robot 0 

Robot 1 

Robot 2 

Robot 0 

Robot 1 

Robot 2 

Robot 0 

Robot 1 

Robot 2 

Robot 0 

Robot 1 

Robot 2 

Robot 0 

Robot 1 

Robot 2 

Robot 0 

Robot 1 

Robot 2 

time (sec)

 

 

Figure 13: Experiment IV timeline in the environment shown in [19] - with obstacles.

with obstacles, as expected. The robots dealt with obstacles
by auctioning tasks again, and trying to access blocked areas
repeatedly until the tasks in those areas were completed.

The timeline in Figure 13 shows the length (by task) of the

path followed by each robot in each run in Experiment IV. Short
gaps indicate intervals where the robot was attempting a task
that was completed by a different robot later (it counts as part of
the distance traveled by the robot, but is not productive in terms

11



Table 6: Average path and longest path traveled in Experiments III (no obsta-
cles) and IV (with obstacles). Path lengths are measured in meters. The size of
the environment is 16× 16 meters.

Experiment Average path Average longest path
Mean (m) σ Mean (m) σ

III (no obstacles) 21.14 1.91 31.53 7.12
IV (obstacles) 22.31 2.22 33.62 5.77

of task completion). The large gaps are intervals where a robot
had completed all its tasks, and took on another robot’s tasks if
the other robot was getting delayed too long. This is done as a
means to ensure that as many tasks as possible are completed
within the time limit (the overarching objective), thus allowing
for some inefficiency in favor of completeness.

One difference we noted with previous experiments was that
the robots had a tendency to follow a different order of task
completion in each run. This is likely due to the environment
and the RRT paths. The re-ordering did not appear to affect per-
formance in terms of average path traveled by the three robots,
however it did affect the length of the longest path traveled, as
shown in the difference between runs 4 and 10 in Figure 13.

Variations in the order in which tasks were accomplished was
caused primarily by the RRTs which tend to bias distances ac-
cording to the manner in which the RRT tree was formed. In
an environment like this, with many ways to access the same
room, different experimental runs would often find different
non-overlapping routes to the tasks. Despite this effect, the dis-
tance traveled did not show too great a variation between runs.

7. Conclusions and Future Work

We have presented an algorithm based on auctions for allo-
cation of tasks to robots, which is robust to robot failure and
environmental uncertainty. We have analyzed the algorithm’s
complexity and compared it with other algorithms in current
use.

The experiments with real robots showed performance sim-
ilar to those done in simulation, even if the real robots were
slower than the simulated ones and more prone to problems.
The experiments showed that the task allocations found did not
suffer significantly from the change in speed in the robots. As a
side effect, the ratio of time for the auctions to the time to exe-
cute the tasks was significantly smaller in the experiments done
with real robots.

The robots proved adaptable, tasks were exchanged during
execution, and the final task assignment was close to optimal.
The comparison of performance between simulation and real
robots showed that simulation results may be relied on.

Future work will include stressing the algorithm even more
with multiple failures of the robots and with repeated communi-
cation failures. Specifically we want to address the case of com-
munication failures before a robot had time to share its tasks
with the other robots. We are also extending our previous work

on auctions for allocation of tasks with precedence constraints
and task duration [4] to work with robots, as a way of providing
a more static allocation of tasks for situations where taskshave
interdependencies.

References

[1] W. Agassounon and A. Martinoli. Efficiency and robustness of threshold-
based distributed allocation algorithms in multi-agent systems. InProc. of
the 1st Int’l Conf. on Autonomous Agents and Multi-Agent Systems, pages
1090–1097. ACM Press, July 2002.

[2] M. Berhault, H. Huang, P. Keskinocak, S. Koenig, W. Elmaghraby,
P. Griffin, and A. Kleywegt. Robot exploration with combinatorial auc-
tions. InProc. IEEE/RSJ Int’l Conf. on Intelligent Robots and Systems,
pages 1957–1962, 2003.

[3] S. Chien, A. Barrett, T. Estlin, and G. Rabideau. A comparison of coordi-
nated planning methods for cooperating rovers. InProc. of the Int’l Conf.
on Autonomous Agents, pages 100–101. ACM Press, 2000.

[4] J. Collins and M. Gini. Magnet: A multi-agent system using auctions
with temporal and precedence constraints. In B. Chaib-draaand J. Müller,
editors,Multiagent based Supply Chain Management, volume 28, pages
273–314. Springer, 2006.

[5] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to
algorithms, second edition, 2001.

[6] M. B. Dias. TraderBots: A Market-Based Approach for Resource, Role,
and Task Allocation in Multirobot Coordination. PhD thesis, Carnegie-
Mellon University, 2004.

[7] M. B. Dias, M. B. Zinck, R. M. Zlot, and A. Stentz. Robust multirobot
coordination in dynamic environments. InProc. Int’l Conf. on Robotics
and Automation, pages 3435–3442, April 2004.

[8] M. B. Dias, R. M. Zlot, N. Kalra, and A. Stentz. Market-based mul-
tirobot coordination: A survey and analysis.Proceedings of the IEEE,
94(7):1257–1270, July 2006.

[9] R. S. Engelmore and A. Morgan, editors.Blackboard Systems. Addison-
Wesley, 1988.

[10] B. P. Gerkey and M. J. Matarić. Sold!: Auction methods for multi-robot
coordination. IEEE Trans. on Robotics and Automation, 18(5):758–768,
Oct. 2002.

[11] B. P. Gerkey and M. J. Matarić. Multi-robot task allocation: Analyzing
the complexity and optimality of key architectures. InProc. Int’l Conf.
on Robotics and Automation, pages 3862–3867, Sept. 2003.

[12] B. P. Gerkey, R. T. Vaughan, and A. Howard. The Player/Stage project:
Tools for multi-robot and distributed sensor systems. InProc Int’l Conf
on Advanced Robotics, pages 317–323, June 2003.

[13] N. Kalra, D. Ferguson, and A. Stentz. Hoplites: A market-based frame-
work for planned tight coordination in multirobot teams. InProc. Int’l
Conf. on Robotics and Automation, pages 1170–1177, 2005.

[14] S. Koenig, C. Tovey, M. Lagoudakis, V. Markakis, D. Kempe, P. Ke-
skinocak, A. Kleywegt, A. Meyerson, and S. Jain. The power ofsequen-
tial single-item auctions for agent coordination. InProc. of the National
Conf. on Artificial Intelligence, pages 1625–1629, 2006.

[15] J. J. Kuffner and S. M. LaValle. RRT-connect: An efficient approach to
single-query path planning. InProc. Int’l Conf. on Robotics and Automa-
tion, pages 995–1001, 2000.

[16] M. G. Lagoudakis, E. Markakis, D. Kempe, P. Keskinocak,A. Kleywegt,
S. Koenig, C. Tovey, A. Meyerson, and S. Jain. Auction-basedmulti-robot
routing. InRobotics: Science and Systems, pages 343–350, Cambridge,
USA, June 2005.

[17] M. Nanjanath and M. Gini. Auctions for task allocation to robots. In
Proc. of the Int’l Conf. on Intelligent Autonomous Systems, pages 550–
557, Tokyo, Japan, Mar. 2006.

[18] M. Nanjanath and M. Gini. Dynamic task allocation in robots via auc-
tions. InProc. Int’l Conf. on Robotics and Automation, pages 2781–2786,
Orlando, FL, May 2006.

[19] C. Tovey, M. Lagoudakis, S. Jain, and S. Koenig. The generation of bid-
ding rules for auction-based robot coordination. InMulti-Robot Systems
Workshop, pages 3–14, Mar. 2005.

12


