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Abstract

We present empirical results of an auction-based algofi¢hialynamic allocation of tasks to robots. The results haentobtained
both in simulation and using real robots. A distinctive teatof our algorithm is its robustness to uncertainties antbbot
malfunctions that happen during task execution, when ueeteal obstacles, loss of communication, and other delaygpneaent
a robot from completing its allocated tasks. Thereforegask yet achieved are resubmitted for bids every time a taslkbken
completed. This provides an opportunity to improve theadtmn of the remaining tasks, enabling the robots to rectreen
failures and reducing the overall time for task completion.
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1. Introduction deviate significantly from estimates, and where the abitlity
adapt dynamically to changing conditions is crucial.

An autonomous team of robots may be deployed in a situ- The algorithm is fully distributed. There is no central con-
ation that is dangerous or inaccessible to humans, such astmller and no central auctioneer, each robot auctionsvits o
building collapsed during an earthquake. The robot team catasks and clears its own auctions. The only assumption we
be used to map the building, identify unsafe areas, anddocamake is that the robots can communicate with each other.
and rescue survivors. Robots in the team will hav@edént The auction mechanism we propose is based on a combina-
tasks. The tasks could be assigned to each robot beforeydepldion of sequential single-item auctiorj$6, 14] andrepeated
ment, but this would reduce the team’s ability to adapt to theparallel single-item auction§s]. It attempts to minimize the
situation. Thus it is preferable to have the robots deteertlie  total time spent to complete the tasks by minimizing the sum
task assignments dynamically through negotiations withen  of the path traversal times for all the robots and by imposing
team. time limit for task execution. With the simplifying assurigot

In this paper we propose a method for distributing tasks dyef constant and equal speed of travel for all the robots,ithis
namically among a group of cooperating robots. We are inequivalent to minimizing the sum of path lengths over all the
terested in situations where each task can be done by a singiebots, as the MiniSUM objective in [19]. The time limit can
robot, but sharing tasks will reduce the time to complete thdorce reallocation of tasks, hence the algorithm’s seconala-
tasks and thus has the potential to increase filiiency of the  jective is to minimize task completion time (called MiniMAX
robot team. objective in [19]).

What makes task allocation to robots challenging is the fact The algorithm we present is simple but robust to failures dur
that robots have to physically move to reach the locations oing execution. It aims at finding a compromise between compu-
their assigned tasks, hence the cost of accomplishing altask tational complexity, quality of allocations, and ability adapt.
pends not only on the location of the task itself but also @n th If a robot finds an unexpected obstacle, experiences any othe
current location of the robot. delay, loses communication, or is otherwise disabled, ¢isé r

In this paper we present empirical results obtained both irof the team continues to operate.
simulation and with real robots using the algorithm we origi  In this paper we describe the algorithm, analyze its complex
nally presented in [17]. The algorithm, which is based onaucity, and report empirical results obtained both in simalatnd
tions, does not guarantee an optimal allocation, but isiafhec  with real robots in a variety of environments.
suited to dynamic environments, where execution time might
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methods, such as centralized scheduling [3], blackboasd sy In Figure 1 we show an example of how a combinatorial auc-
tems [9], or application-specific methods, which do notlgasi tion, a sequential single-item auction, and a parallellekitgm
generalize [1] to other domains. auction difer from each other. The figure shows how the meth-
Combinatorial auctionswhere combinations of tasks are ods would behave in an environment with 4 tasks, To T3
bid at once, have been used to allocate navigation tasks #ndT,, and 2 robotsR;andR,. Since some auction methods
robots [2]. The resulting allocation is optimal but due te th are sensitive to task order, we assume in what follows tissta
computational complexity of combinatorial auctions, gate are bid in the ordeT,, T, T3, andTy.
ing bids and clearing them is slow, and they do not scale well.  The combinatorial auction (shown in Figure 1 with solid ar-
Sequential single-item auctioffs4, 16, 19] auction tasks in- rows) examines the bids for every possible combination ef th
dividually, but robots bid on tasks accounting for theiryire tasks, and finds the optimal solution, which is to allocask ta
ous commitments. This type of auction can be computed i, to Ry, and to sendR, to do tasksT4, Tz andT4, in that order.
polynomial time producing solutions that, when the objexis  The second diagram shows how the sequential single-item auc
to minimize the sum of the path costs for all the robots, are aion (shown with dot-dash arrows) would work. After winning
constant factor away from the optimum [16]. Three objedtive T, R; adds the cost of moving frof, to T, and this is more
are examined: MiniSum, minimizing the sum of the path coststhan the cost foR, to go toT,. Hence R, wins T,. WhenTs
MiniMax, minimizing the maximum path cost, and MiniAve, andT, are auctionedR; wins both as its cost of going {63
minimizing the average path cost over all the robots. The bidvia T; and toT, via T; andTs is less than the cost &% going
ding rules are such that there is no need for a central céertrol from T, to T3 andT4. The ratio of path costs of the sequential
As long as each robot receives all the bids from all the rgbotssingle-item auction compared to the combinatorial aucison
each robot can determine the winner of each auction. Howevet.079 : 1. The parallel single-item auction (shown in the third
this requires each robot to keep track of its own costs anldeft diagram with dashed arrows) assighns Tz and T, (assuming
other robot costs, and so it is not robust to robot malfumstio some path optimization is done) Ry, while R, does onlyT,.
Robots are expected to know the exact cost of completing eachhis is becaus®; starts closer to the three tasks, even though
task at the start. It is unclear how changes to this cost dauseR, could accomplisifz and T; more easily, after completing
by unexpected changes during execution can be handled.  T,4. The ratio of path costs in this case i435 : 1. Hence, the
Repeated parallel single-item auctioj§ auction each task sequential single-item auction achieves a better solutian
separately and treat it as independent of other tasks. Tte authe parallel single-item auction, but it is sub-optimal qared
tions are repeated periodically after a fixed time interValese  to the combinatorial auction solution.
auctions are fast to compute and more robust. They make use
of a pulse that is sent out at fixed time intervals to all theoteb ™ LN KL |
to restart the single-item auction between robots. Thiblesa
robots to switch tasks if the allocation can be improved and \
helps in case of unexpected problems, but has the undesirabl \
effect that the length of the entire path covered by the team
might be unbounded [19]. R @ R R @ o R, ® QRz
We also use single-item auctions, and we repeat the auctions :
multiple times while the tasks are being executed. However . Ti"”’
instead of repeating the auctions at regular intervals,epeat ) !
them whenever a task has been completed. This reduces the
need for communication and the time spentin clearing anstio Figure 1: Task allocation using a combinatorial auctiongquential single-
while still providing the ability to react to changes in thave  item auction, and a parallel single-item auction
ronment or in robot functioning, typically without degradi
performance. In addition, we account for tasks won from an Our algorithm combines both the sequential single-item auc
auctioneer before bidding on subsequent tasks from the santien and repeated parallel single-item auction, by runisient
auctioneer, as in sequential single-item auctions. Thlsges eral sequential auctions in parallel and repeating thei@nst
the chance of an oscillatory situation where tasks keejingett while the tasks are being executed in an attempt to improve
transferred back and forth between two robots, a problemn thdaask allocation. When tasks are initially put up for auctiem
affects the total path length in repeated parallel single-#an:  a single source, the algorithm starts like the sequentigjiesi
tions. We discuss the complexity of our algorithm in Secdon item auction, but all remaining tasks are auctioned agaér af
Our approach is similar to the method presented in [7] wher@ach task is completed. Therefore in the example in Figure 1
a group of robots is given a set of tasks and robots are seleour algorithm will behave dierently if an obstacle between two
tively disabled in diferent manners in order to measure theirof the tasks is found after motion has begun; in that sitndtie
performance, i.e. the percentage of tasks completed, uliider tasks are re-allocated accounting for the modified pathHaitr t
ferent conditions. Our approacHidirs in that we assume atime robot. If the tasks are initially distributed randomly been
limit for task completion. Additionally we use robots thaea the robots, the allocation might be worse since the taskaaif e
simpler and more prone to errors, hence the ability to changmbot are auctioned in parallel, but this will get corredtethe
task allocation is essential. next auction after the first task (which is the nearest aduess
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task) is completed. Our algorithm is also geared to addeglss f
ure on the part of one or more of the robots; the other robots
will take over those tasks and finish them themselves.

3. Auction Algorithm

—

In this work we assume that each robot is given a map ths
shows its own location and the position of walls and rooms
in the environment. No information is given about where the
other robots are located and about other moving objecteptes
in the environment, or about any temporary change, such as
closed doors. The map is used by each robot to estimate, using
Rapidly-exploring Random Trees [15], its cost of traveling
the task locations and to compute the path to reach them fro
its original location. Generation of RRTs is very fast, acales
well with large environments, so they are particularly aympi-
ate for dynamic situations where computing the optimal path
achieve all the tasks allocated to a robot, as in [16], migitt n
pay df, because tasks are likely to be reallocated. Examples ¢
RRTSs for our experimental setups are shown later in Figure
and Figure 6.

Each robot is also given a list of the robots in the team. We
assume the robots can communicate with each other for the pu
pose of notifying potential bidders of auctioned tasks,nsitb
ting their own bids, and being notified when they won a bid.

Tasks are represented at a high-level by the location whefe
the task is to be done and the cost of doing the task. Task
are typically assigned by a user, but could be discovered au-
tonomously by the robots themselves and added to the set
tasks as they are discovered. Tasks are assumed to be dlyequa
important, but we have addressed elsewhere how to deal wi
tasks with priorities [18]. Robots typically do not know #ile
tasks, they are aware only of the ones assigned to them and d
cover the other tasks when they are auctioned.

Let Rbe the set oh robotsR = {rq,r»,...ry}, andT the set of
m tasksT = {t1, 15, ...tm}, Where each task is a location a robot
has to visit. We partition the tasks intodisjoint subsets,
such thaU’j‘le,- =TandTinT;j=¢ Vi#j 1<i,j<nand
allocate each subset to a robot. Note that a subset can bg.emy

The initial task distribution might not be optimal. Some
robots might have no task at all while others might have tog
many tasks, the tasks assigned to a robot might be spread
over the environment, they might be closer to another raiot,
may be unreachable by the robot.

A robot must complete all its tasks unless it can pass its com
mitments to other robots. To pass tasks to other robots,a rob
puts its tasks into a Request for Quotes (RFQ) and broadcas
the RFQ to the other robots. A robot can choose not to bid op
a particular task, based on its distance and accessilalitlyat
task. Since the robots are cooperative and are trying to mirj
imize task completion time, they will pass their commitngent
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Repeat for each robot € R:
1.

Activater; with a set of tasksl; and a list of the othe
robotsR_j = R- {r}.
Create an RRT using's start position as root.
Find paths in the RRT to each task locatiojn
Assign cost estimatg to each task; € T; based on length
of the path found starting from the current position.
Order task lisT; by ascending order af;.
Establish communications with the other robots and b
a list of all the tasks (system task list) for reference.
ri does in parallel:
() Auction its tasks:
i. Create an RFQ with tasks iR.
ii. Broadcastthe RFQ tB_j and wait for bids for a
fixed time limit.

iii. Determine the lowest bith. among all the bidg
received for task;. Letry be the robot that sub)
mitted the winning bid.

If bjx < cj then send; to robotry, else keeyq;.
If r, does not acknowledge receipt, retdyrio
ri. Markt; as assigned.

Ask ry to update its bids, if any, for the remai
ing tasks inT;, ignoring tasks from other aug
tions {x now has a new task). Ify does not
acknowledge receipt, retutpto r;.

Repeat from Step 7(a)iii until all tasks are g
signed.

(b) Bid on RFQs received from other robots:

i. Find a RRT path for each tasgkin the RFQ.

ii. Compute cost estimate for eacht, to which
the robot found a path, starting from its curre
position.

iii. If a bid is won, recompute the bids for the rg¢
maining tasks in that RFQ, accounting for t
tasks assigned from that RFQ and submit b
to the auctioning robot (This ignores tasks frd
other auctions happening in parallel).

(c) Begin execution of the assigned tasks:

i. Find a path in the RRT to the first task)(and
start following it as closely as possible.

ii. If new tasks are added as a result of winning n
auctions, insert them ifi; keepingT; sorted in
expected execution order, from the nearest t
to farther away ones, and repeat from Step 7

iii. If stuck or unable to complete the current ta

within the time promised in the bid plus a gra
period, start a new auction to reassign its tas}
If t; is completed successfully, notify all robo
of task completion, update the system task |
and restart from Step 4.

Vi.

only if this reduces the estimated task completion time. The ,ntil timeout or all tasks are completed.
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ability to pass tasks to other robots is specially useful mwhe
robots become disabled since it allows the group as a whole to
increase the chances of completing all the tasks. Any taak th

cannot be completed by any of the robots, for instance becaus

3

Figure 2: Task allocation algorithm.



it is not accessible, is abandoned. We assume that therki&s va 4. Auction Analysis

in accomplishing the remaining tasks even if not all of them c ) ) ) . . .
be completed. In analyzing the auction algorithm described in the presiou

This process is accomplished via multiple single-item reee Secti_on we make the_foll_owin_g assumptions: (1) all robots ar
auctions, in which the lowest bid wins. Auctions are run inde Working, (2) communications is perfect, (3) all tasks areese
pendently by each robot for its own tasks. The algorithm thafible, and (4) all tasks are initially assigned to a singlgoto
each robot follows is outlined in Figure 2. Formally, the problem is defined as follows: Givemobots

Each bid submitted by a robot is an estimate of the time ijgndmtasks, the setup of the tasks can be represented as a graph
would take for that robot to reach that task location (assgmi G Where tasks are the set of nodesind paths between tasks
for simplicity a constant speed) from its current location. are the set of undirected edgés Each robot associates a cost

Auctions are parallel, i.e. many auctioneers put up their au with an edge. The cost measure we use is travel time. Since
tions at the same time, but since a bidder generates bidsin eawe assume constant and equal speed for all the robots, travel
auction independently of the other auctions, tfie is the time is proportional to path length. As the auction algarith
same as having each auction done as a single-item auction tHOCeeds, it assigns a subset of taskso each robot;, such
the bidder either wins or loses. Since a robot can bid forstaskthat T = {tjlt; is assigned to; andt; € T} and all tasks are
in multiple parallel auctions, the order in which tasks are-e ~assigned, LeUi, Ty =T. .
cuted might be dferent from the order in which bids for tasks Each robotr; needs to find a path to the task sub¥gts-
are submitted and won. The robot cannot compute its bids agigned to it. This is equivalent to solving the travelingesahan
cording to the order of execution, since the order is unknowrProblem for that robot. An approximation can be made using a
at the time of bidding. Therefore, the robot treats each auc@reedy path algorithm that takes the shortest path to thesea
tion in a round in isolation. It computes its bids for each-par Unvisited node. This has provable bounds, as follows. Build
allel auction assuming it starts at its current locatiokjrig & Minimum Spanning Tree (MST) ovér; rooted at the node
into account tasks that were won in that auction, but igrgorin N€arest to;. Let the sum of costs of edges in the MST be de-
tasks won in other auctions. This can result in bids that-over"oted byK;. Then, the greedy path algorithm has a cost bound
(or under-)estimate the true cost. However, because tasks cOf 2% K;j + C; whereC; is the cost for the robot to reach the
be reallocated in successive auctions, this does not intpact 00t of the MST (from [5], Chapter 35, Sect. 35.2.1).

quality of the solution significantly. The overall team cost is then bounded by
In each auction the bid for the closest task is a correct esti- m n

mate because the robot accounts for all the tasks it won tn tha Ciota = Y (Ct) + Z(z x Kj +Cj)

auction. Bids for further away tasks might not be correct be- o1 i1

cause of synergies or unaccounted costs among the tasks won

in other parallel auctions. If a task closest to a robotsenr WhereCt; is the individual task cost for tagk For simplicity

task is incorrectly assigned to another robot, the robotlsvou W€ assume task cost = Ofor1<i<m.

likely win that task back in the next round of auction (unless The objective is to find an allocatidh overT, such thatS

that task gets completed before the next round) since now th@inimizes (2< K; + Cj) for 1 < j < n, subject to the constraint

robot would have moved closer to that task. timaotar < timelimit If multiple solutions are found with the
Each bidder re-orders its tasks each time a new task is addé@me minimum cost, the solution which minimizeseotal is

to its set, and moves immediately towards the nearest task (i chosen.

the task with the lowest cost) in its current entire set oksas [N Table 1 we compare the computational complexity of our

Since auctions from dfierent robots are done in parallel, the algorithm with the complexity of sequential single-itemcau

nearest task could be awarded after the robot started movin§ons and repeated parallel single-item auctiodss the sum

In this case when the robot reorders its tasks it would discov ©Of the path costs for all the robots in the optimal solutioe,, i

it has now a nearer task and therefore change its current desthe one that minimizes the sum of path costs for all the robots

nation. i is the communication pulse interval, i.e. a signal broatlcas

When the robot completes its current task, it starts a neWe all the robots which triggers a new round of auctions [7]),
auction for |ts remaining taskS. In addition to improvingl{a andt iS the Completion t|me to execute a.” the taSkS. Since the
allocation this is specially useful when a robot gets dedaye initial task allocation in our algorithm matches that of gusen-
because this redistribution of tasks enables it to chasgmin- tial single-item auction [16], we can use their complexitak
mitments and to adapt more rapidly. ysis results to our algorithm. Subsequent auctions cartresu

The robots are given a time limit to complete each task, s¢" @dded path costs; these are accounted for in our complexit
that they do not keep trying indefinitely. Typically we use aanalysis, as shown next.
grace period of 10 seconds over the time used in the bid for tha
task. If the task is not completed in that time limit, the rtsoo 4-1. Analysis of Path Length
start a new auction to allow a change in allocation of thdt.tas  In our algorithm, items are sold individually and each robot
When all the achievable tasks (determined by whether at leagccounts for tasks it already won from the current auctionee
one robot was able to find a path to that task) are completed, tthefore bidding further on new tasks from the same auctioner.
robots idle until the time given to them is over. To bid on a new task a robot computes thatence in the cost



Method Time complexity| Sum of Path Costs Initial Comm. | Overall Comm.
Sequential Single Iltem Auctions [16] O(nx m) 2xnxd nxm N/A
Repeated parallel single item auction [/]  O(n x m) unbounded nx me nx mxt/i
Our Algorithm O(n x n¥) B3xn-2)xd nxm nxm

Table 1: Performance comparison between auction mettrotte number of robotsn the number of taskg the total path cost for all the robots in the optimal
solution,i is the communication pulse interval, anthe completion time to execute all the tasks.

of the path that includes the new task from its previously €omin path length at most is(— 1) x 2 x d. Thus the bound on the
puted path cost, and bids thatférence. This is similar to the path length is no more than the MiniMAX bound ofn x d
method of bidding described in [16] for the MiniSUM objeaiv ([16]). When the number of tasks is large enough so that any
(using the bidSumPath strategy, which bids based on an g&pproallocation exceeds the time limit, our algorithm uses thaiMi
imate shortest path through all the tasks to be completelddiy t MAX objective. Therefore, the upper bound on the sum of path
robot), but difers in the handling of multiple auctions, where costs if the robots follow their initial allocation aftereHirst
each auction is considered independently of the otherdsdt a auction is 2x n x d ([16]). Following the initial allocation, in
differs because the overarching objective is trying to completsubsequent auctions, tasks may either stay with the sarmoé rob
all the tasks within the time limit, so if a task takes too Ildng or be reassigned. With the exception of a special case (dis-
complete, it may get reassigned to dfelient robot. Given a cussed next), reassignment is equivalent to having thilinit
large number of tasks and few robots, the time limit might notauction with tasks in the reassigned order, and hence wiji on
be suficient to complete all the tasks using the MiniSUM ob- result in improvement. The special case occurs when two task
jective. Thus, the objective becomes similar to the MiniMAX allocations are nearly equivalent, and the robots keekismig
objective in [16]. between the two allocations in each auction. In this situngti
since the number of auctions is limited by the number of re-
T T, maining tasks, the maximum increaseris<2) x d (the time
kN | ] ..
taken by the remaining robots to reach those tasks). Thas, th
\Ts T / \Ts T, Ts bound on the cost becomesX3 — 2) x d.

T2
u ,/. n /’ u /4. Our auction method avoids the trap of parallel single-item
\- \- \. - auctions, where robots may all travel a long distance tolreac
T T
[

Ta

Ly LT —m"

.TB T ? .T6 T ? T cluster of close together tasks, instead of having just ohetr
completing the tasks in that cluster [19]. This is achievgd b
making robots account for tasks already won from an auctione
in any further bidding in the same auction. This ensuresithat
R, @ R, @ R, @ an auctioneer is auctioning tasks that are close to each, othe
the robot which wins one of those task from that auctioneer
will continue to win subsequent nearby tasks from the same
Figure 3: Task allocation for the MiniSUM objective (lefgpmpared with ~ auctioneer. If nearby tasks were incorrectly given toféedent
MiniMAX (center) and with the allocation obtained by our aighm (right). robot previously, they will get reassigned to the closebbtp
even when they are auctioned byfdrent auctioneers. This is

Figure 3 shows a set of tasks to be completed by two robotbecause independently of which robot auctions that task, th
With MiniSUM, the first robotR; wins all the tasks. With closest robot will bid its distance to that task, and will wre
MiniMAX, the two robots divide the tasks among themselves,task since that would be the smallest bid. Over multipleianct
to minimize the maximum path length traveled by each robotrounds, this implies that tasks will tend to get assignedangs
Let’s assume that the time to complete all the tasks using Minto specific robots, based on their positions.
iSUM is longer than the time limit the robots are given. Then
in our algorithm, after the initial MiniSUM allocation, rob  4.2. Analysis of Communications Complexity
R; would transfer some of its tasks R. This results in the The robots in our algorithm have more communication needs
rightmost allocation, wher&; has just enough time to com- than the robots in [16], since in our case communication con-
plete taskd'; throughT, and the remainder are taken By. tinues after the initial allocation, whenever there is actiam.

The bound on the path cost after the initial minimization isThere aren messages per auction, one per robot,mmd ctions
equal to the MiniSUM bound of 2 d whered is the optimal  (The initial auction+ 1 auction per task completed, with the ex-
path cost [16]. The reassignment of the tasks that exceedeption of the last task). Therefore, a totalnok m messages
the time limit would increase this bound as follows. Each ofare sent.
the tasks reassigned will go to afférent robot, and can add  Failure of communication before the start of execution is a
a maximum of 2x d to that robot's path cost (since paths are problem because tasks may never get shared between robots,
recomputed to approximately minimize travel). Since thénpa and some tasks may remain undone. However, if communica-
length would decrease for at least one robot, the total &smre tion failure takes place later, then the working robots camcbe
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the additional tasks, and the problem can be treated as a modi 3. In the simulation, all obstacles were detectable through

fied one where the number of robots has gone dowrk, if k
robots are out of commission. Givipossible breakdowns, we
need extra rounds of auctions for the tasks of the failedtsybo
thus resulting im x m+ n x k = n x (m+ k) communication
messages.

The number of messages we need is considerably smaller
than the number needed for repeated parallel auctions,ewher
tasks are placed for bidding continuously, so that comnasnic

tions takes place all the time. 4.

5. Experimental Setup

We evaluated our algorithm through experiments done both
in simulation and with real robots. Due to space and equipmen
constraints, we were limited to two robots for the real rabot
periments, but were able to perfornffdrent and more complex
experiments in simulation.

Experiments were performed with the Plag\gtage [12] sim-
ulator. PlayefStage has the advantage that implementation de-
tails do not change significantly when shifting from simidat
to real robots, thus making comparison easier. The expetane

sonars. In the real robot experiments, however, robots oc-
casionally could not detect obstacles, such as table legs,
because the sonar sensors were too far apart and missed
the obstacle. This resulted in several collisions and near
collisions in the real robot experiments, and produced far
more variability in task completion times than what we
had seen in the simulations. Details on the task comple-
tion times can be seen in Table 3 and Table 4.

Odometry in the real robots was significantly worse than
that accounted for in the simulations. In most cases, un-
less there was a tight fit, the robots completed all the tasks
without collision. Tasks were considered to be complete
when the robots arrived within 30 cm of the task (i.e. an
approximate robot-length away from the task). Collisions
were tolerated in simulation; in the real runs, robots that
had collided with obstacles were given one chance to re-
cover and then shut down, to avoid damage.

6. Experimental Results

performed in our robotics lab used two Pioneer | robots, each The main purpose of the experiments was to (1) compare the

mounted with a laptop and equipped with a wireless card fOPerformance of our algorithm .to other aIgonthr_ns, §pedi&ca
o ) in terms of length of the solution paths found infdrent en-
communication with each other.

Communication was done. . "
through Java Sockets, since they provide features sidlar twronments and under fierent conditions, such as presence of
X . . T . moving obstacles, (2) evaluate the performance fiéint as-
what is available in the simulated system. The algorithm al- ects gf our auctiofw ;\I orithm sucE as auction time and com-
lows for dynamic addition of new tasks during execution, bUtrpnunication overhead d?Jrin e>£ecution and (3) validatestine
for simplicity in the experiments the set of tasks and of tsbo 9 ’

. . . ulation results by comparing simulation with real robotsues.
is known at start and does not change during the execution. y panng

Additional simulation experiments done earlier have beenr
ported in [17, 18]. Their purpose was to evaluate tlieative-

6.1. Simplified building scenario

ness of our auction algorithm in comparison to using a single We performed simulation experiments with a simple setup

initial auction, to measure the impact of loss of commundcat

that would allow us to compare the following:

and of changes in the environment, and to measure the robust- e optimal path length.

ness of the algorithm. The earlier experiments used robittis w
5 sonar sensors andfirential drives, scattered in the hospital
world environment provided by Play&tage.

In this paper we report results on experiments conducted in
three scenarios, a simplified building scenario we use for-co
parison of diferent algorithms in simulation, a lab scenario,
where we performed experiments both with real robots and in
simulation, and a more complex building scenario, where we
performed experiments only in simulation.

5.1. Adaptations for Real Robots
There were some non trivial fliérences we had to deal with
between the simulation and the real robot experiments.

1. Player 2.0 has significantftérences in the way real robots

2. The path length given an initial assignment that is opti-

mal, but using RRTs to compute the paths. RRTs do not
produce the shortest path, so using them gives us a fair
baseline for comparison. Since RRTs are generated for
each run and they areftrent in each run they introduce
additional variability in the path lengths across runs.

3. The path length using one round of parallel single item

auction. Given the layout of the tasks, repeating paral-
lel single item auctions would keep the same allocation of
tasks to robots, so in this case a single round acts like re-
peated rounds.

4. The path length using our algorithm of repeated sequentia

single-item auctions.

move in comparison to the simulation. The same com- Figure 4 illustrates the environment used, and the pathis tha
mand produced in simulation afféring range of motion were found by the dierent algorithms. The environment is
than when given to a real robot. Thus, motion command46x 16 meters. We ran 20 experiments in each scenario.

had to be reconfigured to suit the robots.

The results are summarized in Table 2. The results show the

2. Data for ranges of goals, sonar ranges, and collisioreng effect of using RRT-based path finding - while vefieetive in
had to be modified to suit the real robots, since the formarge environments with multiple rooms, in small rooms RRTs

factor of the real robots was considerablyfelient from
that of the simulation.

can produce suboptimal results. In this case, even if wé star
with a fixed optimal allocation, RRTs increase the averagdle pa



(a) Paths for optimal task allocation (b) Paths for optimal task allocation, computing paths WEIT

(c) Paths computed using parallel single-item auctions (d) Paths computed using our algorithm

Figure 4: Layout in the simplified building experiments, qmaring the optimal paths with the paths produced by parsithglle-item auctions and by our algorithm.

length. The parallel single item auction results in assigrall ~ when starting with an optimal allocation and the ones usarg p
the tasks in the upper half-plane to roli®t and those in the allel single-item auctions. There is a significanffelience in
lower half plane to robd®,, regardless of the order in which the the results for parallel single-item auctions vs. both tiigail
tasks are auctioned. This increases the path length, amshowptimal allocation with RRTst(37.66) = 26.458 p = 6.24

in Table 2. The performance of our algorithm is close to thel02%) and our algorithmt(22.67) = 11.83, p = 3.54x 1071%).
optimal performance, and on par with starting with an optima This supports the hypothesis that parallel single-itentians
allocation. produce paths whose length is significantlffelient from op-

Assuming that the underlying distributions are normal, wetimal and from what our algorithm computes. The comparison

conducted unpaired two-tailed Welch’s t-tests to comphee t between our algorithm and the initial optimal allocatiortiwi
path lengths produced by our algorithm with the ones obthineRRTs showed that theftierence was not significart(23.43) =
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Table 2: Length of minimum, maximum, and average path teali#l the exper-
iments in the simplified building scenario. Path lengthsmaeasured in meters.
The environment is 1& 16 meters. Results obtained over 20 runs. Results
shown for optimal allocation, optimal initial allocatiorsing RRTs, parallel
single item auction, and our algorithm

Algorithm Min path Max path  Average path
(m) (m) Mean (m)| o
Optimal using RRT| 34.00 | 39.73 36.90 1.69
Parallel single-item 48.10 | 53.77 50.45 1.54
Our algorithm 33.07 | 50.98 36.78 | 4.93
Optimal path 31.64

. . Figure 6: Experiment Il map: robots are circles and tasksaaterisks. The
0.103 p = 0.919), supporting the observation that our algo—RgTS for run% are shown. P

rithm performs well compared to the optimal allocation.

uneven distribution of the tasks between the robots. In Expe
ment Il there were eight tasks distributed initially suchttthe

For the real robot experiments, the robots were given a mamajority of the tasks given to rob&, were closer to robaR;
of the lab which did not include chairs but included table po-and vice versa. This was done to examine if the robots ex-
sitions, and were given a description of the team, includiey  changed tasks successfully and completed them correctly.
wireless identifiers of the other robots. The robots steatetif- We performed 5 runs of each experiment type individually,
ferentlocations, and were given their own approximatetfgssi  both in simulation and with the real robots.
in the map. The tasks were scattered randomly in the lab and The performance of the real robots in experiment Il is shown
were initially divided equally between the two robots. in Figure 7. We can notice that the allocation of tasks is not

To ensure all tasks were done, when a robot had completgtie same in the dlierent runs.For instance, in run number 4 of
all its assigned tasks, it would wait a fixed amount of timaifus Experiment I, shown in Figure 5, task 0 was auctioned first but
ally the amount of time the other robot had provided as its low due to the way the RRT curved, the estimated cost for task 5
est bid) waiting for another robot to start a new auction.nif a by robotRy was very high (it added the cost of going to and
task in the system task list maintained by the robot wasistill returning from task O to its cost estimate). RoBtinitially
complete and no auction had been started, the robot woutd stavon task 2 because it had a lower cost estimate, but rapot
a new auction for the incomplete tasks. won it back after it completed task 0.

The two experimental setups in the lab are illustrated in Fig The task completion times for the lab scenario experiments
ure 5 and Figure 6. The figures also show the RRTs formed bgre summarized in Table 3 and Table 4. In each case, the robots
each robot in one of the runs. completed the assigned tasks within 2 minutes, staying well
within the 10 minute time limit provided.

6.2. Lab scenario

Table 3: Task completion times (in seconds) for ExperimeRdsults shown
are averaged over 5 runs.

Task Assigned Robot  Real Robots Simulation
ID | Inttial | Final | Mean (s)| o Mean (s)| o
0 0 0 33.478 | 12.78| 13.796 | 0.75
1 0 1 35.443 | 10.82| 14.180 | 2.67
2 0 1 35.018 | 5.12 | 11.828 | 2.21
3 1 1 21.707 | 3.56 | 18.755 | 6.06
4 1 1 28.041 | 9.48 7.135 | 0.62
5 1 0 17.872 | 12.28| 22.910 | 2.27

Total 121.618| 16.53| 52.955 | 7.01

Figure 5: Experiment | map: robots are circles and tasks sterisks. The
RRTSs for run 4 are shown.

In run number 3 in Experiment Il (Figure 6), robBg ini-
In Experiment | there were six tasks scattered randomly irtially got stuck trying to get to task 6, and then completesl th
such a way that an optimal task allocation would result in arremaining tasks, but was much slower than usual in comgjetin
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Table 4: Task completion times (in seconds) for ExperimerRésults shown orderof 1.6 Second_s in the first auction, dropping to O'SMS(? .

are averaged over 5 runs. subsequently. While the real robots also had a longer linitia

auction, such a large drop was not seen in the auction times.
Task completion times in simulation were significantly

Task Assigned Robot  Real Robots Simulation shorter than the corresponding times in the real robot éxper

ID | Initial | Final | Mean (s)| o Mean (s)| o ments, as shown in Table 3 and Table 4.

0 0 1 16.771 | 1.51 7.495 0.39

1 0 1 29.678 0.47 11.528 1.79 Table 5: Auction times (in seconds) for Experiments | andRisults shown

2| o 0 46.727 | 3.90 | 18.478 | 1.75 | are averaged over 5 runs.

3 0 0 27.470 | 4.31 29.268 | 14.08

4 1 1 35.404 | 9.76 | 11.004 | 2.79 Experiment Real Robots Simulation

5 1 0 42.060 | 23.96| 8.773 1.81 Mean (s) o Mean (s) o

6 1 0 36.862 | 15.44| 8.593 3.18 | (6 tasks) 0.4052 | 0.1861| 0.5527 | 0.5797

7 1 1 22.719 | 3.39 12.610 | 0.40 Il (8 tasks) 0.4322 | 0.2412| 0.4865 | 0.4938
Total 151.185| 39.04| 53.642 | 1.72

The auctions took a very small percentage of the total time
(as shown by the light grey bands in Figures 7 and 8, and sum-
the first two tasks, probably because of low battery. marized in Table 5), and caused small delays between one task

i 0 )
The simulation experiments in comparison did not showf"md the next. This accounted for less than 1% of the time spent

robots getting stuck as often. The timeline for simulatian e n perform!ng the tasks. Communication time was also a very
periment Il is shown in Figure 8. A significantftBrence was small fraction .Of the time taken to complege the tasks (O'F"a"e
a long initial auction time in simulation as compared to thalr age, communlcat|0_ns took up Iess.than 1% of the.work-t.|me).
robots. This was likely caused by the fact that the computers We can summarize the comparison between simulation and

used in the simulation shared a network and hence took Iongé(r:'aI robots as follows:
to initially establish connections than the robots whicldl laa ¢ Algorithm performance: The task allocation found in sim-
dedicated network. This resulted in initial auction timestioe ulation was identical to that found in the real robot exper-



Figure 9: Stage image of the building scenario used in Erpent II1. Figure 10: Simulation experiment lll: An example showing thaths fol-
lowed by robotdy, R; andR;.

iments, thus the simulation results were acceptable as préV, we added moving obstacles in four locations (in the eorri

dictors of the real robot performance. However, the impactlors and in front of doors) that hinder robot movement. We

of the time taken to perform the auctions was significantlyperformed 10 runs for each of these experiments.
less with the real robots compared to simulation, since ex- The paths followed by the robots in one of the runs for Ex-
ecution times were much shorter in simulation. periment Ill are shown in Figure 10. The path followed by the
e Time: the simulated robots moved faster than the reatobot on the left shows squiggly lines where the RRT was fol-
robots, despite the fact that we tried to find an equivalenfowing the wall too closely. The obstacle avoidance rouine
velocity setting; thus, the auctions took a more significantwvould force the robot away from the wall, but the path to be
portion of simulation time than they did in the real robot followed would bring it back close to the wall. This kind of
experiments. This speedfiirence also required modifi- movement was happening often due to the tendency of RRT
cations to the range parameter settings to get equivalemipdes to be generated close to walls when in an environment
settings for the real robots as compared to simulation.  with many rooms. However, this did not cause a significant

e Robot performance: The simulation was much more opnegative impact on the motion of the robot, when overall per-
timistic about the ability of the robots to detect obstaclesformance is considered.

and recover from errors; in the real robots, there was a The experiments show that the robots were able to success-

tendency to get stuck that was not seen as frequently ifylly complete the tasks scattered in the environment, ggne

simulation. ing paths comparable to those shown in [19]. However, a tirec
comparison with [19] is not possible due tdtdrences in scale,
number of tasks, and positions.

In Figure 11 we show the environment used for Experiment
IV. There are four obstacles, shown as small rectangles, tha
move across the corridor or in front of a door. The paths fol-
lowed by the robots in one of the runs for Experiment IV are

We have also evaluated our auction algorithm in the envishown in Figure 12.
ronment described in [19], with 18 tasks and three robotg-(Fi  The experiments with moving obstacles showed only small
ure 9). This environment is more complex than the lab environdifferences from the ones without obstacles, as can be seen in
ment, because there are numerous rooms and doors connetable 6. In the runs with obstacles the robots successfapied
ing them, so the navigation is harder. The major reason fowith moving obstacles, showing on average only a 5% increase
choosing this environment is to enable comparison of resultin path length. Similarly completion time averaged 6 min and
produced by dferent algorithms in the same environment. We47 sec without obstacles, and showed an increase of appmeoxim
used two diferent experimental setups. In Experiment Il we tively 10% (to 7 min and 30 sec) in the case of obstacles. The
used the same layout as the one used in [19]. In Experimen@ariance in average distance traveled was greater in the run

10

In conclusion, the simulation experiments were good indica
tors of real world performance, though some problems faged b
actual robots were not perfectly mirrored in simulation.

6.3. Building scenario



Figure 11: Stage image of the building scenario with obstaadsed in Ex- Figure 12: Simulation Experiment IV: an example showing fiahs fol-
periment IV. The obstacles move along their longer axis. lowed by the robots when obstacles are present.
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Figure 13: Experiment IV timeline in the environment showjli9] - with obstacles.

with obstacles, as expected. The robots dealt with obstaclgpath followed by each robotin each runin ExperimentIV. $hor
by auctioning tasks again, and trying to access blockedsaregaps indicate intervals where the robot was attemptingla tas
repeatedly until the tasks in those areas were completed. that was completed by aftierent robot later (it counts as part of

The timeline in Figure 13 shows the length (by task) of thethe distance traveled by the robot, but is not productivetims
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Table 6: Average path and longest path traveled in Expetsnién(no obsta-
cles) and IV (with obstacles). Path lengths are measurectann The size of
the environment is 1& 16 meters.

on auctions for allocation of tasks with precedence comgtra
and task duration [4] to work with robots, as a way of providin
a more static allocation of tasks for situations where taske

interdependencies.

[2]
of task completion). The large gaps are intervals where atrob
had completed all its tasks, and took on another robot'sstéisk
the other robot was getting delayed too long. This is done as d3]
means to ensure that as many tasks as possible are completed
within the time limit (the overarching objective), thusalling 4]
for some indficiency in favor of completeness.

One diference we noted with previous experiments was that
the robots had a tendency to follow afdrent order of task
completion in each run. This is likely due to the environment
and the RRT paths. The re-ordering did not appeaffextper-
formance in terms of average path traveled by the three spbot
however it did &ect the length of the longest path traveled, as
shown in the dference between runs 4 and 10 in Figure 13.

Variations in the order in which tasks were accomplished was
caused primarily by the RRTs which tend to bias distances ac-8l
cording to the manner in which the RRT tree was formed. In
an environment like this, with many ways to access the samegg;
room, diferent experimental runs would often findffdrent
non-overlapping routes to the tasks. Despite tHisat, the dis-
tance traveled did not show too great a variation betwees. run

(11]

5]
(6]

[7]

(10]

7. Conclusionsand Future Work
[12]

We have presented an algorithm based on auctions for allo-
cation of tasks to robots, which is robust to robot failurel an [13]
environmental uncertainty. We have analyzed the algof#hm
complexity and compared it with other algorithms in current
use. [14]

The experiments with real robots showed performance sim-
ilar to those done in simulation, even if the real robots were
slower than the simulated ones and more prone to problemg.s]
The experiments showed that the task allocations foundatid n
suffer significantly from the change in speed in the robots. As 6]
side dfect, the ratio of time for the auctions to the time to exe-
cute the tasks was significantly smaller in the experimeoted
with real robots. 17]

The robots proved adaptable, tasks were exchanged durirﬁg
execution, and the final task assignment was close to optimal
The comparison of performance between simulation and red!sl
robots showed that simulation results may be relied on.

Future work will include stressing the algorithm even morej;g
with multiple failures of the robots and with repeated conimu
cation failures. Specifically we want to address the casemfc
munication failures before a robot had time to share itssask
with the other robots. We are also extending our previoukwor
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