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Abstract. We present an efficient anytime algorithm for a customer
agent to select bids submitted by supplier agents in response to a call
for bids. Bids might include combinations of subtasks and might include
discounts for combinations. The job of the customer agent is to select
the optimal bid combination. In our experiments we explore the behavior
of the algorithm based on the interactions of factors such as bid prices,
number of bids, and number of subtasks. The results of experiments
we present show that the algorithm is extremely efficient even for large
number of bids.

1 Introduction

In recent years, a variety of architectures have been proposed for electronic
commerce and multi-agent automated contracting [3, 7, 10, 13, 18, 19].

In addition to the work on virtual market architectures, several protocols
have been developed and proposed that support automated contracting and
negotiation among multiple agents in such markets [14, 15, 16]. For example,
Smith [17] pioneered research in communication among cooperating distributed
agents with the Contract Net protocol. The Contract Net has been extended by
Sandholm and Lesser [15] to self-interested agents.

In these systems, agents communicate and negotiate directly with each other.
On the other hand, in the MAGNET (Multi AGent NEgotiation Testbed) sys-
tem [6], the proposed architecture and the associated protocol for automated
contracting utilize an external and independent market infrastructure to reduce
fraud and counterspeculation among self-interested agents.

Existing architectures are generally designed for the kind of commercial ac-
tivity that involves buying and selling of physical or electronic goods over a
distributed electronic environment such as the Internet. They do not explic-
itly support more complex interactions such as those in a contracting domain
where customer agents formulate plans and use the negotiation process to gain
commitment from multiple supplier agents for the execution of these plans.

A primary motivation behind the design of our proposed protocol and mar-
ket framework is to support automated contracting. This sort of problem is
often found in public contracting and it is useful, in general, in multi-enterprise
manufacturing.



The MAGNET contracting market framework incorporates a three step pro-
cess with a customer agent issuing a call-for-bids, suppliers replying with bids,
and the customer accepting the bids it chooses with bid-accept messages. The
bid is a commitment by the supplier to do the work listed in the bid, should the
customer accept it.

In contrast to Sandholm’s protocol [16], MAGNET avoids the need for open-
ended negotiation by means of bid break-downs and time-based decommitment
penalties, as described more in detail in [5].

Regardless of the specific protocol used for agent negotiation, once the cus-
tomer receives the bids from supplier agents, it must evaluate the bids based on
cost and/or time constraints, and select the optimal set of bids (or parts thereof)
which can satisfy its goals.

To avoid open ended negotiation we require the suppliers to itemize prices of
individual subtasks. Since the customer knows what the supplier will charge for
each individual subtask, if the customer decides to accept only a subset of the
original bid there is no need for additional negotiation.

Considering that customer and suppliers are software agents residing on dif-
ferent machines and communicating over the Internet, any reduction in commu-
nication has the advantage of increasing the speed and robustness of the overall
system.

In this paper, we focus on the bid selection methods used by a customer agent
to evaluate supplier bids and formulate a contract. In particular, we propose an
anytime algorithm [2] which allows the customer agent to obtain the optimal bid
combination based on a cost function. What makes the problem difficult is the
presence of discounts in bids for combinations of subtasks.

We have chosen a local improvement search over a constructive search for
three reasons. First, there is a straightforward mechanism for constructing a
baseline feasible solution.

Second, the time-dependent nature of the negotiation protocol requires that
the search be completed within a fixed period of time. Boddy and Dean [2] have
characterized this type of search as an anytime search. In [1], Boddy has further
characterized the requirements for anytime problem solving using performance
profiles.

Third, since the search space for this problem is well-structured, a systematic,
domain-specific search algorithm such as the one we propose here appears more
suited than the generic methods described in [12].

The rest of this paper is organized as follows. In Section 2 we provide the
details of our anytime algorithm and show how it operates on a simple example.
In Section 3 we describe the results of our experimental evaluation which explore
the behavior of the algorithm based on the interactions of factors such as bid
prices, number of bids, and number of subtasks. We then compare this algorithm
to the standard admissible A∗ algorithm, using a minimum cost heuristic. Finally,
in Section 4, we conclude by discussing some of the areas that remain to be
explored in our future work.



2 Description of the Algorithm

We consider a typical contracting situation in which the customer’s call-for-bids
is comprised of a group of subtasks. We use bid break-downs (as in MAGNET [6])
to avoid open-ended negotiation among agents, but for simplicity, we do not
consider temporal factors such as bid deadlines or time-based decommitment
penalties.

Accordingly, a bid by a supplier is a subset of these subtasks with an asso-
ciated cost or price for the whole bid. In addition, each bid includes a cost for
individual subtasks that make up the bid. The bid cost may represent a discount

over the sum of the costs of individual subtasks contained in the bid. To satisfy
a subtask the customer agent has the option of choosing the whole bid from a
given supplier, or selecting individual bid elements from various suppliers.

A typical contracting situation is depicted in Figure 1, where the customer
agent has issued a call-for-bids comprised of four subtasks S1, S2, S3, and S4.
Suppliers have submitted 3 bids, each containing a subset of these subtasks.
Finally, the customer, after evaluating the bids, has accepted parts of bids 1 and
3 and all of bid 2. In this case, the customer would pay the full price for subtasks
S1 and S4 as specified by bids 1 and 4, respectively. However, subtasks S2 and
S3 may have been obtained at a discount price since the customer has accepted
the complete bid.

Fig. 1. A Typical contracting situation

We now present our bid selection algorithm. The goal is to find the best
combination of bids and parts of bids (selecting only some of the subtasks from



a bid, and ignoring the discount) to cover the entire set of subtasks specified by
the call-for-bids.

The algorithm has two phases. First, we build an initial solution from the best
individual subtask prices. If there are no bids for one or more of the subtasks, no
initial solution can be constructed and the algorithm terminates. If a solution
exists, we try to improve the initial solution by applying discounts from the
various bids. Because each bid represents a single discount, we conduct our
search by bid, not by subtask.

Each solution is represented by a node in a list of feasible solutions. We start
the list by creating an initial solution, storing it in what we call the origin node,
and placing the origin node in the feasible solution list.

Each node, which represents a solution to the problem, includes a list of
subtasks, the price of each subtask, which bid is covering each subtask, whether
each subtask is part of a discount (false for all subtasks in the origin node), and
the total discount amount (zero in the origin node).

In the algorithm, we use the notation node.bidID[i] to indicate the bid
identifier of subtask i in the node node, node.price[i] to indicate the price
of subtask i, node.discount?[i] to indicate if subtask i is part of a discount.
node.T otalDiscount indicates the total discount, node.DiscountedPrice the dis-
counted price, and node.T otalPrice the total price of the solution. We will use
a similar notation to indicate the components of a bid.

/* initialize origin node */

create origin node;
origin.T otalDiscount← 0;
for each subtask ∈ SetofTasks do

origin.bidID[subtask]← unassigned

origin.price[subtask]←∞
origin.discount?[subtask]← false

/* construct an initial solution (if one exists) */

for each bid ∈ SetofBids do

for each subtask covered in bid do

if origin.bidID[subtask] = unassigned

or bid.price[subtask] < origin.price[subtask]
then origin.price[subtask]← bid.price[subtask]

origin.bidID[subtask]← bid.bidID[subtask]
solution?← true

for each subtask ∈ SetofTasks do

if origin.bidID[subtask] = unassigned then solution?← false

if solution? = false then exit /* no solution exists */
add origin to SolutionList /* a solution exists */



/* improve the initial solution by applying one or more discounts */

for each bid ∈ SetofBids do

for each node in SolutionList do

discounted?← false

for each subtask covered in bid do

if node.discount?[subtask] = true then discounted?← true

if discounted? = false

/* there is no subtask overlap for the discounts */
then create a new node current

for each subtask in bid do

current.price[subtask]← bid.price[subtask]
current.bidID[subtask]← bid.bidID[subtask]
current.discount?[subtask]← true

current.T otalDiscount← node.T otalDiscount + bid.discount

current.T otalPrice←
∑

subtask∈SetofTasks current.price[subtask]

current.DiscountedPrice←

current.T otalPrice− current.T otalDiscount

if current.DiscountedPrice < node.DiscountedPrice

then add current to TemporaryList

else discard it
add the nodes from TemporaryList to SolutionList

sort SolutionList in decreasing order by DiscountedPrice

the first node in SolutionList is the best solution

Let us now consider a detailed example of this procedure. In this example,
we consider a call-for-bids on four subtasks. Suppose that, in response to the
call-for-bids, three bids are received by the customer agent:

1. Bid 1 covers subtasks 1, 3 and 4 for 130 units with subtask 1 at 50 units,
subtask 3 at 50 units and subtask 4 at 45 units (15 units discount).

2. Bid 2 covers subtasks 2 and 3 for 95 units with subtask 2 at 60 units and
subtask 3 at 70 units (35 units discount).

3. Bid 3 covers subtasks 1 and 4 for 95 units with subtask 1 at 75 units and
subtask 4 at 40 units (20 units discount).

The origin node is formed by taking the smallest individual price for each
subtask, thus:



Origin Parent Node: None

subtask bidID price discount?
1 1 50 false
2 2 60 false
3 1 50 false
4 3 40 false

total price: 200
total discount: 0
discounted price: 200

We now try to form a child node for each node in the list using the Bid 1
discount. Since there is only one node in the list, and none of its subtasks are
marked as discounted, we make a child node:

Node 1 Parent Node: Origin

subtask bidID price discount?
1 1 50 true
2 2 60 false
3 1 50 true
4 1 45 true

total price: 205
total discount: 15
discounted price: 190

Since the discounted price is indeed less than the discounted price of its
parent, we add this node to the list. We now try to create children using the Bid
2 discount. From the Origin Node we can make a child:

Node 2 Parent Node: Origin

subtask bidID price discount?
1 1 50 false
2 2 60 true
3 2 70 true
4 3 40 false

total price: 220
total discount: 35
discounted price: 185

Since the discounted price is less than the discounted price of its parent, we
add this node to the list. We cannot, however, make a child node from Node 1
(because there is a discount overlap on subtask 3).

We now move on to Bid 3. We can make a node from the Origin Node:



Node 3 Parent Node: Origin

subtask bidID price discount?
1 3 75 true
2 2 60 false
3 1 50 false
4 3 40 true

total price: 225
total discount: 20
discounted price: 205

This node is not added to the list. Its discounted price is actually above the
price of its parent (in this case the origin node).

We cannot make a child from Node 1 using Bid 3 because of the overlap on
subtasks 1 and 4. We can, however, make a child of Node 2:

Node 4 Parent Node: Node 2

subtask bidID price discount?
1 3 75 true
2 2 60 true
3 2 70 true
4 3 40 true

total price: 245
total discount: 55
discounted price: 190

This node is not added to the list, because though it is cheaper than the
Origin Node, it is not cheaper than its parent node (Node 2).

There are now a total of three nodes in the list, and the cheapest price can be
found in Node 2. Though that node contains higher subtask prices than the origin
node, it contains enough discount to make it the least expensive combination.

The number of nodes created by this algorithm is highly dependent on the
interaction between the number of bids, subtasks, price variation, and discount.
We shall examine the results of some of these interactions in the next section.

Our algorithm conducts a systematic search on a finite space, so the algorithm
is complete. It finds the optimal solution because it creates all non-conflicting
discount combinations. Combinations which are not considered as solutions are
rejected because they increase the total price. Since the algorithm starts with
a solution and only combinations that decrease the price are considered, the
algorithm has an anytime behavior. The algorithm can be terminated any time
and will return the best solution found so far. Given additional time, it will
produce a better solution, if one is available.



3 Experimental Evaluation

In order to observe the behavior of this algorithm under different circumstances,
we constructed a set of experiments using the following parameters:

– The number of subtasks in the call-for-bids. We tried 10, 20 or 30 subtasks.
– The number of bids (suppliers). We tried 10, 20, or 30 suppliers.
– The mean percentage of subtasks that suppliers will include in their bids.

This percentage was fixed at 30% for one set of experiments, and was varied
randomly within the 10 to 60% range, for another set of experiments.

– The price range that suppliers can bid for each subtask. We tried allowing
the price to vary widely (10-100) or narrowly (80-100).

– The percentage discount that suppliers will offer in their bids. This was
picked with a uniform distribution within the range 0-40%.

All of the subtasks were considered to be of equal importance and were
bid by the suppliers up to a price of 100 units each. Subtask ordering and other
temporal considerations were ignored. For each experiment, ten different bid sets
were produced with the same parameters, and the number of nodes examined
to complete the search was computed.

Figures 2 and 3 illustrate the results for these experiments. Figure 2 shows
the results for two sets of experiments, one in which the percentage of subtasks
per bid was fixed at 30% and another with the percentage varying in the range
of 11-60%. In both cases, the bid prices varied from 10 to 100 units. Figure 3
shows the results of another two sets of experiments using the same subtask
percentage parameters, but using a bid price range of 80-100 units.

Comparing Figures 2 and 3, we can see that when pricing is allowed to
fluctuate widely, the number of nodes searched decreases as the number of bids
increases. When prices are constrained in their range, however, the number of
nodes increases as the number of bids increases. This is due to the fact that, in the
unconstrained scenario, there is an increased chance of bids being overpriced with
respect to the lowest price, even when considering their discount. This, in turn,
results in an increase in the number of nodes discarded. In a typical contracting
situation we should expect the price range not to have a large variance. Therefore
it would be desirable for the customer agent to receive fewer bids, as illustrated
in Figure 3.

When the subtask percentage (the percentage of subtasks that can appear in
a bid) is allowed to vary up to sixty percent, some of the bid sets have a large
number of subtasks, which causes the number of nodes searched to decrease
as the number of subtasks increases. In general, the larger is the percentage of
subtasks in each bid, the better the algorithm performs. At one extreme, if no
bid contains multiple subtasks only one node is expanded. At the other extreme,
if each bid includes all the subtasks, the algorithm is linear in the number of
bids.

In Figure 4 we compared the performance of this algorithm with a standard
A∗ algorithm, using a minimum cost heuristic. As the figure shows, the number



Fig. 2. Price varying from 10 to 100 unit

Fig. 3. Price varying from 80 to 100 unit



of nodes expanded by A∗ grows very rapidly. A comparison with other branch
and bound algorithms [8] is planned for the near future.

No of Subtasks No of Bids A
∗ Anytime

Algorithm

4 4 137 2.6
4 6 350 2.3
4 8 695 1.8
6 4 659 2.7
6 6 3682 2.1
6 8 7367 1.9
7 4 4830 2.3
7 6 22104 1.5

Fig. 4. Number of nodes expanded by A
∗ and by the anytime algorithm for a variety

of problems. For all the experiments the price range is between 10 and 100 units, the
percentage of subtasks each suppliers includes in the bids is between 30% and 80%.
The table shows the average number of nodes expanded in 10 runs for each experiment.

All of the experiments implemented here were coded in Java 1.02, compiled
using Code Warrior(tm), and run on a BeBox. On average about one hundred
nodes per second were added to the solution lists, so our algorithm produced
solutions in most of the experiments within one to two seconds.

From these results we can see that the interesting parameters to explore
should be when the subtask bid percentage is small and both prices and discounts
are kept in a reasonable range. Under these conditions, the space searched can
become very large with larger numbers of bids and subtasks. In order to use
the anytime property of this algorithm, it may become useful to sort the bids
(and thus guide the search space) by the percentage discount given. When the
algorithm is interrupted, it will have already tried to apply the better discounts,
and so should produce a cheaper solution than looking at the bids in a random
order.

4 Conclusions and Future Work

In this paper we have presented preliminary results of our work in developing
an anytime algorithm that can operate in an electronic marketplace of agents,
and choose the best combination of bids in real time on a reasonably sized
problem. Our proposed algorithm has been developed as part of the MAGNET
contracting market framework [6]. It compares favorably with algorithms that
build solutions (for example, a constructive A∗ search of the subtask space).

Our experimental evaluation suggests that the algorithm searches very effi-
ciently the search space and expands a small number of nodes before producing



the optimal solution. The algorithm can be interrupted at any time and will
return the best solution found so far.

It has been observed that there is often a form of phase transition situation
that separates easy from hard problems [4]. This observation has produced sig-
nificant results in the context of propositional satisfiability (SAT) problems (see,
for instance, [11, 9]. It would be worthwhile to explore if specific heuristics adapt
better to either of these extremes, and to study the effect of alternative pruning
tactics on hard problems in the domain we have described here.

There are extensions to this algorithm that we are considering. First, we
plan on including other factors in the cost of bids, such as the reliability of
the supplier, or the desirability of the customer to deal with a specific supplier,
Second, we plan on extending the algorithm to include time considerations in
addition to price. The best bid could be the one that accomplishes the task at
the most appropriate time for the customer, not the one that has the lowest
price.
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